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ABSTRACT

The objectives of this contract were to continue previous work and to carry out new
fundamental studies in the following areas of interest to thermal recovery: displacement
and flow properties of fluids involving phase change in porous media; the effect of reservoir
heterogeneity at various scales; flow properties of non-Newtonian fluids; and the optimization
of recovery processes. The specific projects are motivated by and address the need to improve
heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs
producing from vertical or horizontal wells.

This report covers work performed in the various physicochemical factors for the im-
provement of oil recovery efficiency. In this context the following general areas were studied:
(i) The understanding of vapor-liquid flows in porous media, including processes in steam
injection; (ii) The effect of reservoir heterogeneity in a variety of forms, from pore scale
to macroscopic scale; (iii) The flow properties of additives for the improvement of recovery
efficiency, particularly foams and other non-Newtonian fluids; and (iv) The development of
optimization methods to maximize various measures of oil recovery.
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INTRODUCTION

Thermal methods, and particularly steam injection, are recognized as most promising for
the efficient recovery of heavy oil. Despite significant progress, however, important technical
issues remain open. Specifically, still inadequate is our knowledge of the complex interaction
between porous media and the various fluids of thermal recovery (steam, water, heavy oil,
gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and
macro-scale heterogeneity is largely unexplored.

The objectives of this contract were to continue previous work and to carry out new fun-
damental studies in the following areas of interest to thermal recovery: the displacement pat-
terns and flow properties of fluids involving phase change, such as condensation-evaporation,
and the onset of gas flow in solution gas drive in porous media; the effect of reservoir hetero-
geneity; the flow properties and patterns of various non-Newtonian fluids, particularly those
involving yield stress, such as foams and Bingham plastics; and the development of methods
to optimize recovery processes. The specific projects are motivated by and address the need
to 1mprove recovery from typical reservoirs as well as less conventional fractured reservoirs
producing from vertical or horizontal wells.

The studies completed under this contract involve various research tools, including anal-
ysis, computations and experiments. We have extensively used pore networks for pore-level
modeling and flow visualization using micromodels. Simulation at the pore-scale and the
reservoir scale were also understaken. The work has been detailed in a variety of technical
publications, conference papers, topical reports and Ph.D Dissertations. Lists of the various
publications and theses for which full or partial support was provided by this contract are
separately described below.

Due to lack of space, in this report we selectively present representative publications of
the work conducted in the following areas: (i) The delineation of the patterns at the pore-
network scale in steam injection; (ii) The development of the critical gas saturation in solution
gas-drive processes, in relation to foamy oils; (iii) The study of drying patterns during the
evaporation of a liquid in a mtarix block, in the ocntext of oil recovery by gas injection; (iv)
The phase diagram of fully-developed drainage that accounts for reservoir heterogeneity; (v)
The development of a theoretical tool for the description of the displacement patterns in
fluids with yield stress, which is the building block for the study of foams and Bingham
plastics; (vi) The development of optimization methods to maximize various measures of oil
recovery; and (vii) A direct method to identify the permeability heterogeneity of laboratory
samples. These contributions are in various stages of publication, as can be also seen from
the list attached below.

This contract has supported partly or fully the PhD study of the following students:
Pouya Amili, Changan Du, Chunsan Jia, Persefoni Kechagia, Hooshang Kharabaf, Maryam
Shariati, Bagus Sudaryanto, Ioannis Tsimpanogiannis and Lang Zhan. In addition, it has
partly supported the post-doctoral work of Baomin Xu, May 1995-May 1998, and Catherine
Laroche, January 1999-December 1999.
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1. DISPLACEMENT REGIMES IN FULLY-DEVELOPED STEAM
INJECTION

Y.C. Yortsos
ABSTRACT

We present an analysis of the displacement properties during the dynamic invasion of
steam in a porous medium. Two fully developed regimes are identified, similar to the
Stabilized Displacement (SD) and the Capillary-Viscous Fingering (CVF) regimes of the
isothermal drainage problem (Yortsos et al., 1997). Phase change and heat transfer affect
the scaling of the various properties of these regimes. Near the advancing steam front, phase
change and heat transfer bring about a qualitative change in the flow permeabilities, al-
though not in the displacement pattern, which remains of the Invasion Percolation type, if
injection rates are sufficiently small. The relative permeabilities in this region are larger
than those for the isothermal displacement problem. A condition is developed to delineate
the regions of validity of these two regimes.

INTRODUCTION

Understanding the mechanisms of flow and the displacement properties in a steam zone
is a subject of continuous interest to processes in thermal oil recovery (Prats, 1982), boiling
in porous media (Ramesh and Torrance, 1993) and geothermal applications (Schubert and
Straus, 1979). In thermal recovery processes, injected or in-situ generated steam displaces
initial liquids in-place, such as water and oil, and liquid water generated by steam con-
densation. Although these displacements involve immiscible fluids, possible effects of phase
change, associated with steam condensation, and of heat and mass transfer, have raised the
question whether or not the aspects of conventional, isothermal, immiscible displacement are
also applicable to steam injection. A significant issue is whether in a steam displacement
process the flow patterns will depend on phase change and heat transfer parameters. Given
that patterns dictate the various phase configurations, resolving this issue will elucidate the
relative permeabilities of steam and water phases, which are important quantities for thermal
recovery modeling and need to be determined (Sanchez and Schechter, 1987).

In this paper, we consider the simpler problem of the displacement of an initial subcooled
liquid water by injected steam in a porous medium. Neglecting for a moment, the possibility
of an oscillatory advance of the steam front, due to rapid condensation and evaporation events
(Kong et al., 1992, see also Kneafsey and Pruess, 1999), the displacement process involved
is primary drainage, a non-wetting vapor phase displacing a wetting liquid phase. In the
absence of phase change, this process has been well understood (see works by Lenormand et
al., 1988, Lenormand, 1989, Xu et al., 1998). Recently, we have shown that fully-developed
drainage takes the form of one of two different patterns, either a stabilized displacement
(SD) or a capillary-viscous fingering (CVF) pattern, depending on the values of the capillary

number, Ca = 9%, and the viscosity ratio, M = £= (Yortsos et al., 1997, 1998, Xu et

al., 1998) (see Fig. 1). Here, ¢ is the injection velocity, u stands for viscosity, v is the
interfacial tension between the two fluids and subscripts nw and w stand for non-wetting

and wetting fluids, respectively. The flow properties can be obtained from a knowledge of




the displacement pattern. For example, in the SD case, the advancing front is followed
by a viscous-stabilized compact pattern (Fig. 1), where relative permeability and capillary
pressure functions could in principle be inferred from percolation concepts (Heiba et al.,
1982, Wilkinson, 1984). In CVF, the displacement pattern is diffuse, dominated by viscous
fingers, the scaling and properties of which are still not clearly understood, however.

When the injected fluid is subject to phase change, such as steam condensation, the
pattern structure will be affected also by heat transfer to the initial subcooled liquids and
to the surrounding impermeable rock strata, and may possibly be time-dependent (Satik
and Yortsos, 1995). In the case of steam displacement of oil, the process will be additionally
complicated by three-phase flow issues, as well as by mass transfer, if the oil contains volatile
components. Thus, the determination of the displacement patterns in these processes is
substantially more complicated. However, little is known, at present, about this problem.

Closely related is the problem of determining relative permeabilities. In modeling rel-
atlve permeabilities in steam injection, two different approaches have been taken. In one,
practiced mostly in the geothermal literature, the relative permeabilities of steam and water
are assumed to be straight lines, the application being mostly to countercurrent water-steam
flows. In another approach, taken mostly in the thermal recovery literature, the relative
permeabilities are assumed to be identical to those for conventional, isothermal, immiscible
displacements. The application here is mostly to steady-state, adiabatic concurrent flow.
Sanchez and Schechter (1987) measured steam-water relative permeabilities during steady-
state, concurrent and isothermal flow of steam and water and found that they are identical to
those for a non-condensible gas-water system. Using percolation theory, Parlar and Yortsos
(1987) reached the same conclusions, under the hypothesis of isothermal conditions and lack
of heat losses.

However, the assumption of constant temperature, or of negligible heat transfer, and
thus of negligible phase change, is not uniformly valid in a steam zone, and certainly not
near the steam front region, or where heat losses to the surrounding formations are expected
to be significant. In such regions, the flow patterns and distribution will be different from
those for the isothermal case. A first attempt to analyze this issue was taken by Satik and
Yortsos (1995) who provided a numerical study of steam injection using 2-D pore-network
models. They modeled the invasion of steam in a liquid-occupied porous meidum under
non-isothermal conditions (see also the related analysis of boiling, Satik and Yortsos, 1996).
Their results showed the existence of different patterns and flow distributions, depending on
the injection variables and also of the time elapsed.

The objective of this paper is to complement the work of Satik and Yortsos (1995) by
providing a theoretical analysis of the steam invasion problem at the pore-network level.
In particular, we want to address the issue of how to generalize the results for isothermal
drainage, reached by Yortsos et al. (1997) and Xu et al. (1998), and therefore how to model
relative permeabilities, in steam injection under non-isothermal conditions. The paper is
organized as follows: First, we address the questions of whether or not an Invasion Percola-
tion (IP) pattern, at sufficiently small injection rates, can be sustained under non-isothermal
and phase-change conditions, and if so what are the expected flow conductances. Then, we
describe features of two fully-developed displacement patterns, analogous to the SD and the
CVF patterns for isothermal displacement of Yortsos et al. (1997) (Fig. 1). Finally, we
present a phase diagram for these two patterns in the capillary umber-mobility ratio dia-
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gram. As in the isothermal case, the delineation of these two regimes essentially constitutes
a stability analysis of steam injection at the pore-network level.

ANALYSIS

We consider the injection of a condensible vapor phase, such as steam, in a porous
medium, to displace its liquid, initially at subcooled conditions. At least during the initial
stages of the displacement, in all cases, or near the leading edge of the front throughout
the process, in the case of SD, capillary forces are dominant. It is known that in this case,
under isothermal displacement conditions, and in the absence of phase change, the pattern
is Invasion Percolation (IP). According to IP rules, this pattern forms one-site-at-a-time
by the penetration of the pore throat with the smallest capillary threshold among all pore
throats available to the front. A typical IP pattern is shown in Fig. 2. We remark that
Satik and Yortsos (1995) showed in their simulations that IP patterns are possible for steam
injection at sufficiently low rates. Using percolation theory, Xu et al. (1998) determined
the extent of the region near the front, where capillary forces dominate, as a function of
the capillary number and the viscosity ratio, by requiring that the pressure drops in the
displacing and displaced phases across this region is sufficiently small for IP to apply. When
phase change is involved, however, it is not clear, first that an IP pattern can be sustained,
even at sufficiently small injection rates, and second that the flow distributions will be the
same with those in the isothermal problem. These two issues are successively addressed in
the following sections.

Invasion percolation with phase change

In conventional immiscible displacement under IP conditions, the invasion of one pore at
a time is the combined result of a constant injection rate and the incompressibility of the
two phases. Then, the mass balances at a front meniscus I read (Fig. 3)

Ui = Uqr = VT (1)

where u; denotes normal velocity, vy is the normal velocity of the meniscus, and subscripts
i, d and [ stand for the invading (non-wetting) phase, the defending (wetting) phase and the
meniscus, respectively. At IP conditions, only one meniscus, that with the smallest capillary
threshold, advances at a given time step (for example, meniscus A in Fig. 3). For all other
mensici, where capillary thresholds are large (for example meniscus I in Fig. 3), the mass
balances (1) read

Ui = U =V = 0 (2)

Flow conductances and relative permeabilities of displacing and displaced phases can be
determined by applying a constant pressure drop across two opposite boundaries of the
known IP pattern, imposing no-flow conditions across any menisci not on the two boundaries
and calculating the resulting flow rates. The small values of the relative permeability of the
invading phase, under these conditions, reflect the tortuosity of the IP pattern.
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In problems with phase change, mass and energy balances are different, however. Now,
for an arbitrary interface at the front I, steam, water and interface velocities are related
according to

ps(usr — v1) = pu(tewr — v1) (3)

and

peLu(uar 1) = A s @
where p stands for density, L, is the latent heat of vaporization, A is thermal conductivity,
T denotes temperature, n is the unit normal to the interface directed towards the liquid
phase and subscripts s and w stand for steam and condensed water, respectively. In contrast
to the isothermal problem, if capillarity prevents a pore throat from being invaded, steam
may still arrive and condense at that meniscus to supply the heat transfer rate required by
the temperature field donwstream. Thus, in contrast to isothermal displacements, incoming
steam and outgoing condensed water fluxes across a stationary meniscus are not necessarily
zero, but they are related to the temperature field, according to (3)-(4), which for v; = 0
read as follows

A OT A OT

il an 24 ver=——mals (5)

Conversely, the penetration of a new pore will require not only that the capillary threshold
be exceeded, but also that the temperature of that pore is sufficiently close to the steam
temperature, so that heat transfer requirements can be met during the next time step. The
distribution of the steam and water flow fields, in response to heat transfer requirements,
will be drastically different and will make steam injection a problem qualitatively different
from isothermal displacement.

Nonetheless, in the absence of inertia effects (see below) and at sufficiently small rates
(see also below), the main forces on a meniscus will still be due to capillarity, thus the
sequence of penetration events would still be dictated by the capillary thresholds of the
throats neighboring the front. Hence, we expect that IP rules would still be applicable at
the leading edge of the front, as in conventional displacements. Indeed, such patterns were
obtained in the pore-network simulations of Satik and Yortsos (1995), as discussed above.
However, penetration of a pore at the next time step may not occur or even not be possible,
depending on the temperature field of the region to be invaded, as discussed above. Although
not affecting IP patterns, at low rates, the phase change and heat transfer requirements will
affect the flow fields of invading and defending phases, hence their flow conductivities. Thus,
the relative permeabilities will not be identical to the conventional, at least near the leading
edge of the displacement. In addition, steam condensation at various places at the front
could make the rate of advance of the front significantly smaller than that based on the
volumetric rate of steam injection (to which it would otherwise coincide under conditions of
isothermal displacement) by a factor which can be as large as the density ratio p,/p;- These
issues are further discussed below.

We conclude that at least during the initial stages of the displacement, or near the front
throughout the process, in the case of SD, the pattern is still Invasion Percolation (IP), as

Us] = —
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in the isothermal problem. As in the isothermal displacement problem, we further expect
fully-developed steam injection to be described by one of two different regimes: a SD, where
a fractal front of dimensionless extent (in pore length units) o exists, and where the pattern
is IP, followed by a viscous-stabilized compact pattern; and a CVF regime, where the pattern
is controlled by viscous forces. Intermediate, time-dependent patterns may also develop, as
shown in Satik and Yortsos (1995). In the next section we describe some of the expected
properties of these regimes.

Properties of fully-developed regimes

To determine the extent of the steam front in SD, we follow the same approach as in Xu
et al. (1998) and seek the variation of the capillary pressure, P, across this region. For this
we need an estimate of the corresponding changes in the pressure of the non-wetting (steam)
and the wetting (liquid) phases. In this region, the steam occupies a fractal pattern, the
conductance of which, in the isothermal case, scales non-linearly with its extent. However,
the flow distributions of steam and displaced water in this region are not necessarily the
same as in the isothermal problem, as pointed out above, due to the fact that steam will
condense at various places, in order to satisfy heat transfer requirements according to (5)
(and also heat transfer to surrounding rock strata).

This coupling with the temperature field makes the problem of determining flow fields,
and relative permeabilities, quite complex, and possibly time-dependent. As pointed out
above, the flow conductances can be obtained by solving for the pressure field in the percola-
tion cluster, across which a pressure drop is imposed. However, now the boundary conditions
at the various interfaces of the cluster will be constant-flux (rather than zero-flux) condi-
tions, as specified by the temperature field (equation (5)). The end result would be that the
tortuosity of the fractal IP pattern will have a different (and smaller) effect on the conduc-
tances of steam and water phases, which now will also depend on the temperature field in
the liquid phase (and the surroundings).

A detailed analysis of this problem will not be presented here. Instead, we will proceed
by making the plausible conjecture that the pressure drop-flow rate relationship for steam
will be similar to the isothermal case as in Xu et al. (1998), but with a smaller conductance
exponent a, to reflect the smaller resistance to flow due to condensation. This presumed
power law dependence must be verified by additional study, however. Under this assumption,
we will have

'l,l,sll,l,s atv(D—1)
g v

AP, ~ (6)
where 7, is a typical pore size, u; is the steam velocity in this region, v is the correla-
tion length exponent of percolation and D is the percolation mass exponent (Stauffer and
Aharony, 1992). Implicit in (6) is the assumption that o < ¢, where ( is the conductance
exponent of percolation. An immediate implication of (6) is that the relative permeabilities
at the leading edge of the front will be larger than in the isothermal case in this region, not
because the pattern is different from IP, which it is not, but because the flow conductance
has a different scaling with length under non-isothermal and phase-change conditions. Thus,

Tm
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we expect that the conventional scaling of the non-wetting relative permeability near the
percolation threshold, namely

v

krnw ~ SEU (7)

where ¢ and 3 denote the conductivity and percolation probability exponents of percolation,
respectively, would be replaced by the different expression

(atv(d—-2))v

kps~ S ° (3)
where d denotes dimensionality. Because of the above inequality and the relation ¢t = ¢ +
v(d — 2), equation (8) shows that the steam relative permeability near the front is larger
than in the conventional immiscible displacement, for the same saturation, reflecting effects
of condensation. Although the precise dependence remains to be determined, this tendency
is qualitatively in the same direction with the linear model of steam relative permeabilities,
refered to above.

Likewise, the flow field, hence the pressure drop, of the liquid will be affected by the
condensing steam. As in the isothermal case, the pressure drop of the liquid would be a
linear function of the front extent o (but with a different, condensation-dependent, prefactor),
hence

Unyfloy
Tm

AP, ~ o 9)

Now, near the front, the prevailing non-isothermal conditions will cause most of the steam
to condense. In this limiting case, therefore, the overall velocity of the water will be mostly
due to condensed steam, thus we expect further

PsUs
Uy ~ 10
- (10
based on which (9) becomes
AP, ~ Bl (11)
PuTm

Combining (6) and (11) gives the variation of the capillary pressure across the front in this
limit

u atv(D—1)

N (ba_'(—+ = —Mea) (12)
Tm

where b is a dimensionless constant and M, is the ratio of the kinematic viscosities (M, =

:—;M )- By proceeding as in Xu et al. (1998) we can determine the spatial extent of the front

o. Under the above conditions one can derive the equation

(baﬂf__ll -~ Mea) ~ 2? o% (13)
Fs

where ¥ is a measure of the standard deviation of the pore-size distribution, and the capillary
number was based on the average steam velocity at the front.
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Comparing (13) with the expression in Xu et al. (1998) for isothermal displacement
we note two differences: First, the exponent ¢ is smaller than its isothermal counterpart ¢
reflecting the influence of heat transfer (it reduces to the latter under isothermal conditions).
Second, the effective viscosity ratio is being replaced by the ratio in kinematic viscosities,
reflecting the condensation of steam in the front region. The fact that in problems involving
phase change the ratio of kinematic viscosities is the effective viscosity ratio was noted before
in macroscopic analyses of steam injection (Miller, 1975, Prats, 1982).

Given the similarity between expression (13) and that for isothermal displacement, we
can follow directly the analysis of Xu et al. (1998) to determine the properties of o, etc. For
example, at small values of the capillary number, we can show the following scaling

N T
UN(Ca;:) TTaFo(D-1 (14)

2%

The smaller value of a above shows that condensation will result in a more sensitive de-
pendence of the front region extent on the capillary number. Other properties follow in a
straightforward manner.

The upstream region of a SD will have similar properties with those of the isothermal case.
For example, away from the steam front, the steam zone will be a region practically under
isothermal conditions, thus the two displacements will have little differences. As a result, we
expect that the relative permeabilities in that region should not be much different from their
isothermal counterparts. On the other hand, near the steam front, or at places neighboring
impermeable rock strata, steam condensation due to heat losses may also occur. This will
affect the flow distributions, hence the relative permeabilities to steam and water. We expect
that these will tend to approach the linear model, although the specific dependence needs
to be more carefully determined.

The other regime expected for fully-developed steam injection will have features similar to
the CVF regime of isothermal displacement (Xu et al., 1998) with two notable exceptions.
First, and in contrast to isothermal displacement, heat transfer will tend to stabilize the
displacement pattern by reducing finger growth and by increasing finger thickness. For
example, the macroscopic stability analysis of Miller (1975), the results of which can be
extrapolated here, shows that heat conduction is stabilizing steam front fingers. Second, the
reduction in the effective mobility of the two fluids, due to condensation, will also affect the
properties in this regime. For example, if we follow the approach of Xu et al. (1998), and in
the absence of heat conduction, the finger width is predicted to have the scaling

CaM,\ vt
”N( 9% ) (15)

which indicates a thickness larger by a factor of about 10007+ s 30 from conventional viscous
fingers under otherwise similar conditions. This limiting result, based on negligible heat
conduction but accounting for steam condensation, demonstrates the well known stabilizing
influence of condensing flows.

We must note that a possibly important effect in this regime of higher rates could be
the effect of inertia and the possible large oscillations of menisci. Indeed, at sufficiently
large velocities, inertia effects will dominate over capillary and viscous forces and will lead
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to new patterns. An analysis of this problem remains to be done. Also, the oscillation of
menisci during steam front advance also can be a non-trivial process. Such oscillations may
accompany the penetration of a pore throat. For instance, if, due to fluctuations in heat
transfer, steam must condense locally, the corresponding meniscus will retract accordingly.
The corresponding loss in steam volume must be replaced by an equal volume of liquid, which
due to the large density differences, however, comprises a manyfold larger amount of mass.
The required mass flow rate can only be provided by the backwards flow of liquid water,
which can be accomplished if there is a local pressure lowering. The resulting liquid flows
may be inertia-dominated and exert non-trivial effects. On the other hand, the lowering of
the saturation temperature, which will result from the lower pressure, will lead to a reduction
in the heat loss rate and will act to stabilize the advance of the meniscus. At present, these
effects are not well understood.

Phase diagram

Consider, now, the problem of describing the boundary between the two developed
regimes of stabilized displacement (SD) and CVF. We will follow Yortsos et al. (1997)
and focus on the initial phase of the displacement, where the pattern is of the IP type, of
a linear extent x(t) < x., where X, is to be determined. The pattern will first depart from
percolation, where capillary forces are dominant, at x(¢) = x., at which point the transition
towards a fully developed displacement starts. According to Yortsos et al. (1997), the latter
will either become of the SD type (with a compact region following an IP front) or of the
CVF type, depending on whether at x., the percolation probability p decreases or increases
in the direction of displacement, respectively (and in which case the problem is Invasion
Percolation in a Stabilized or a Destabilized Gradient, respectively).

The analysis follows the steps for the SD case presented above. First, we must determine
the capillary pressure variation across X, where percolation concepts apply, and which in
absolute values reads as follows

AR ~ Sk etz

Tm

- eX (16)

where ¢ is another dimensionless constant. In the above we have used the exponent o
(yet to be determined) to reflect the influence of heat transfer and phase change on flow
conductivities, and assumed that condensation at the front modifies the viscosity ratio to
M.. These two features correspond to the limit when phase change effects are strong. To
define x, we follow Lenormand (1989), as described in Yortsos et al. (1997). After several
manipulations one obtains the following equation for determining x.

Ca vl a+v!D—2)
—Z—XC" exe © —M,|~c¢ (17)

which is qualitatively the same as in Yortsos et al. (1997). Based on (17) these authors
further showed that the type of the displacement patterns to be obtained depends on the
relative magnitudes of Ca and M., as follows:
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If M, < M* (where M* is approximately equal to 1), the displacement is unconditionally
stabilized and will be of the SD type. In the opposite case (M, > M*), the displacement
will still be stabilized (SD), provided that

1+atuv(D-1
Cari= < oo (18)

)Y

Otherwise, a CVF regime will emerge.

The regions of validity of the two regimes according to the above criteria are shown in
the log-log plot of Fig. 4. The two regimes are separated by a curve which at large Ca
is asymptotically the vertical line M, = M*, while at Ca is given by the straight line (in
logCa-logM, coordinates) defined by condition (18). This straight line has a negative slope
equal to %2_-'2711. We note that as « increases, the slope of the curve increases, indicating
that the region of validity of the SD diminishes. This reflects the increased flow conductance
of the vapor phase as a decreases. Now, in many realistic situations, the value of the effective
mobility ratio (equal here to the ratio of the kinematic viscosities), is sufficiently small for the
SD regime to be valid under all injection conditions. In such cases, the relative permeabilities
in the steam zone would be given by their isothermal counterparts, except near the front,
where they would be larger as a result of the phase change.

CONCLUSIONS-

In this paper we presented an analysis of the displacement properties during the dynamic
invasion of steam in a porous medium. Near the advancing front, phase change and heat
transfer bring about a qualitative change in the flow conductances, although not in the
displacement pattern, which remains of the Invasion Percolation type, if injection rates are
sufficiently small. The relative permeabilities in this region are larger than those for the
isothermal displacement problem. Two fully developed regimes were identified, similar to
the SD and the CVF regimes of the isothermal drainage problem. Phase change and heat
transfer affect the scaling of the various properties of these two regimes. A condition was
also developed to delineate the regions of validity of these two regimes. Additional work is
required to further understand quantitatively the various properties, however. Not included,
but potentially important, effects of inertia, also need further study.

NOMENCLATURE

b: prefactor of the power-law, dimensionless

c: prefactor of the power-law, dimensionless
Ca: capillary number, dimensionless

d: Euclidean dimension exponent, dimensionless
D: mass dimension exponent, dimensionless

k: relative permeability, dimensionless

L.,: latent heat, [L2T~?]
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M: viscosity ratio, dimensionless

M,: ratio of kinematic viscosities, dimensionless
n: normal vector, [L]

P: pressure, [ML™'T?]

¢: injection velocity, [LT™]

r: pore size, [L]

S: saturation, dimensionless
conductivity exponent, dimensionless
: temperature, [K]

: flow velocity, [LT™?]

: interface velocity, [LT™!]

e g Nt

: modified conductance exponent, dimensionless
: percolation exponent, dimensionless

: interfacial tension, [MT 2]

: conductance exponent, dimensionless

: thermal conductivity, [MLT—3K™1]

: viscosity, [ML™1T~?]

: correlation length exponent, dimensionless
density, [ML™3]

: front width, dimensionless

: standard deviation of the pore size distribution, dimensionless
: distance, dimensionless

X MAITIE >0 DR

Subscripts

d: defending

F': front

2: Invading

I: pertaining to interface I
m: mean

nw: non-wetting

r: relative

s: steam

w: wetting

e: limiting
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Figure 1: Phase diagram of fully-developed isothermal drainage (from Yortsos et al., 1997).

18



o s

~0-4 p-O- O~ 3 -0 40
o404 e & > 20 <
[ Y
- 0444414 o8 + 4
) ¢ < g & 3
0-;% % > 53" L
sarvs sas ‘ . < Q-0 S
* 8 T ’xm-—{ < , >~
4 . X
% be 1 .
) d PO 8od D &
»-o-?, 404 ""'1 l‘ 5-4
S sesnss: s % s
P, P,
O »-i < 2
4 < < -
4 - o> >4 O 19904
- . X r > OO1=¢
h 2 L
+ 4 04
) ¢

Pt e/ ot ¥oainds S

Figure 2: Invasion percolation pattern.
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2. A NUMERICAL STUDY OF THE
CRITICAL GAS SATURATION IN A POROUS MEDIUM

C. Du and Y.C. Yortsos
ABSTRACT

We use pore-network simulations to study the dependence of the critical gas saturation
in solution-gas drive processes on the geometric parameters of the porous medium. We show
that for a variety of growth regimes (including global and local percolation, instantaneous
and sequential nucleation, and mass-transfer driven processes), the critical gas saturation,
Sye, Tollows a power-law scaling with the final nucleation fraction (fraction of sites activated),
fo- For 3-D processes, this relation reads Sg. ~ f'°, indicating a sensitive dependence of
Sgc to fg at very small values of f,.

INTRODUCTION

The critical gas saturation, S,., in a solution gas-drive process in a porous medium
denotes the gas saturation at which the onset of bulk gas flow occurs. In the typical ap-
plication, gas is liberated from the liquid solution containing light components by pressure
. decline (Hunt et al, 1956, Handy, 1958). Other processes, for example boiling, involve the
application of a heat flux. Knowledge of the magnitude of S;. and of the factors that control
it, is important to various oil recovery processes. Below the critical gas saturation, mostly
liquid flows, the gas being constrained by capillarity in relatively small clusters of pores
(“bubbles”). As the critical saturation is reached, however, a gas sample-spanning cluster
forms and bulk flow of gas commences. Subsequent to this, gas is preferentially produced,
due to its low mobility, with detrimental effects on liquid production rates.

Understanding the factors that determine S, has been sought in many past studies (e.g.
see Dumore, 1970, Danesh et al., 1987). A recent summary can be found in Li and Yortsos
(1995a). Early studies (e.g. Kennedy and Olson, 1952, Wieland and Kennedy, 1957) focused
on the application of homogeneous nucleation theory to predict rates of generation of gas
bubbles. More recently, the emphasis shifted on understanding the process by combining nu-
cleation and the subsequent bubble growth in the porespace. In particular, the specific form
of the nucleation mechanism, whether homogeneous or heterogeneous, has been sidestepped
as an issue (Yousfi et al., 1991), and the prevailing view is that the most critical factor is
what controls the appearance of a macroscopic bubble, which will eventually occupy a pore
body. In other related applications, this factor has been recognized by various authors to be
the capillary roughness of the pore walls (Crum, 1982, Atchley and Prosperetti, 1989).

Yortsos and Parlar (1989) represented capillary roughness in terms of a hydrophobic
cavity, the size of which was distributed (and assumed, ad hoc, to be correlated to the pore
size). Yousfi et al. (1991) pointed out the importance of the capillary roughness, although
they did not proceed with a specific model. In this paper, we follow the same line of reasoning
and define nucleation as the process that leads to the appearance of a macroscopic bubble,
and more precisely as that at which the capillary resistance of the cavity in the pore wall
is exceeded for the adjacent pore body to be occupied by a gas bubble. As an illustration,
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consider a cavity (or other geometric expression of pore wall roughness) at the pore wall that
contains a stable gas bubble (either pre-existing or nucleated by some nucleation mechanism)
(Figure 1). The bubble will remain trapped by capillarity in the wall (hence “macroscopic”
nucleation will not occur) as long as the following constraint between the local pressures
applies

2
Pr—p < (1)

where 1, is the mean radius of curvature of the cavity mouth, v is the gas-liquid interfacial
tension, Py is the pressure in the gas bubble and Py, is the liquid pressure at the interface.
The gas pressure is related to the molecular composition of the liquid solution. By assuming
simple thermodynamic equilibria, such as Henry’s law, we may further write

Py = KC (2)

where K is an equilibrium constant and C is the concentration of the light component (“gas”)
in the liquid. It is then apparent that a reduction in the liquid pressure, or an increase in
the gas concentration (supersaturation) could lead to the growth (and possible detachment
from the wall) of the gas bubble and the filling of its adjacent pore body (Figure 1). In
this context, therefore, the site will be activated (nucleation will occur) when the capillary
threshold of the cavity, f—z, is exceeded for the first time.

The growth of the gas phase at the pore and pore-network scales, following nucleation, was
studied in detail by Li and Yortsos (1995a, 1995b) and Satik and Yortsos (1996) in the two
contexts of solution gas-drive and boiling, respectively (see also Satik et al., 1995, for a related
study). Effective continuum models, which ignore, however, the pore structure, have also
been used (e.g. Mulu and Longeron, 1989, Kashchiev and Firoozabadi, 1993, Firoozabadi and
Kashchiev, 1996). Li and Yortsos (1995b) combined pore-network visualization experiments
and pore-network simulation to develop insight on the growth of multiple bubbles evolving
from a variety of nucleation centers. These authors identified the following growth regimes:

1. A global percolation regime, in which gas-liquid interfaces in any gas-occupied pore
advance one-at-a-time by invading perimeter pore throats in order of increasing capillary
resistance (or, equivalently, of decreasing radius). This regime, first proposed by Yortsos
and Parlar (1989) in their study using a Bethe lattice representation of the porous medium,
is based on the assumption that growth is sufficiently slow so that concentration profiles are
quasi-static. Li and Yortsos (1995a) derived a condition for the validity of this regime and
showed that it applies at low pressure decline rates and low permeability media. Experiments
by Kamath and Boyer (1993) showed the relevance of this regime in solution gas-drive in
tight porous media, in qualitative agreement with Li and Yortsos (1995a).

2. A local percolation regime, in which gas-liquid interfaces belonging to the same cluster
advance one-at-a-time, following the above-mentioned order of increasing capillary resistance.
Because of competition for solute mass and possible mass transfer effects (diffusion, screening,
etc.), in this case, however, interfaces in other clusters may not grow, even though they may
neighbor perimeter throats with smaller capillary resistance. Mass transfer was simulated
by various methods, including a rule-based DLA (Diffusion-Limited-Aggregation) approach,
as well as using full numerical simulation at the pore-network scale.
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The findings of Li and Yortsos (1995a) showed that S,. depends mainly on the nucleation
fraction (namely the fraction of sites nucleated up to the time the critical gas saturation was
reached) and to a lesser extent on the manner of nucleation. We must emphasize, again, that
in this paper nucleation refers to the process leading to the appearance of a macroscopic,
pore-filling bubble. When nucleation is “instantaneous”, which occurs when all nucleation
sites are activated at once, the critical gas saturation was found to be independent of the
pressure decline rate. This is not the case for “sequential” nucleation, however, where sites
are activated progressively, and where the critical saturation was shown to increase with the
pressure decline rate (see also Du and Yortsos, 1997). Instantaneous nucleation was proposed
by Firoozabadi and Kashchiev (1996) as a predominant mechanism in porous media. The
results of Li and Yortsos (1995a) suggest that depending on the particular conditions, S,
can be considerably high, in general agreement with measured critical gas saturations in real
cores (Kortekaas and Poelgeest, 1989). On the other hand, infinitesimally small values have
also been reported (Firoobazadi et al., 1989).

In this paper we explore the dependence of the critical gas saturation on the nucleation
fraction and the geometrical parameters that control it, by carrying out Monte Carlo simula-
tions in pore networks. We consider global and local percolation regimes, as defined above, so
that the movement of interfaces is only constrained by capillarity. Instantaneous and gradual
nucleation mechanisms are both studied. The general objective of the study is to obtain a
relation between S, and the nucleation fraction, and to also probe its dependence on the
geometric characteristics of the porous medium. For this purpose, we introduce a cavity size
distribution, o,(r), the relation of which to the pore-throat size distribution, a;(r), dictates
the nucleation and occupancy sequence. Specific objectives are to test numerically two the-
oretical hypotheses: one proposed by Yortsos and Parlar (1989), which states that the onset
of critical gas saturation coincides with the percolation threshold of percolation processes
originating from multiple nucleation centers, and another by Li and Yortsos (1995a), who
proposed a scaling relation of Sy to size and nucleation fraction. We must point out that in
this paper, the effect of the pressure decline rate is not explicitly considered. The implicit
assumption is that presure decline rates are sufficiently small for capillarity in pore throats
to control the menisci movement locally. At large pressure decline rates, snap-off of gas
bubbles, bubble division in pore throats and ganglia motion and coalescence will occur (see
Bora et al., 1997, for a recent visualization). Such processes are not considered here.

SIMULATIONS

We proceed by assuming a pore-network representation of the porous medium, with dis-
tributed pore throats (bonds) and pore bodies (sites). In addition, we assume that nucleation
sites, in the form of cavities or other shapes of pore-wall roughness, characterized by a mean
radius of curvature, are distributed in the network, one each at every pore body (actually
such cavities represent the largest nucleation cavity in a given pore). This distribution is
random and in general unrelated to the pore throat or pore body size distributions. In our
terminology, a nucleation site is activated when its capillary resistance, as given by equation
(1) is first exceeded (Figure 1). The evolving gas bubble is assumed to occupy the host
pore body, which thus forms the origin for the subsequent growth of a gas cluster. Multi-
ple clusters can grow from multiple nucleation sites. A typical figure from Li and Yortsos
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(1995a) illustrating the evolving cluster patterns is shown in Figure 2. In our simulations,
2-D square and 3-D cubic lattices of size LZ, where E (equal to 2 or 3) is the (Euclidean)
dimension of the lattice, were used. Here L is the dimensionless size of the lattice, expressed
as a number of pore lengths. In all processes, pore throat and cavity sizes were assigned
randomly, namely no spatial correlations were considered. First, we simulated the growth of
clusters assuming conditions of global percolation.

a. Global Percolation

In this regime, the growth of clusters follows the order of increasing capillary resistance
of pore throats in the perimeter of all clusters. The process is similar to invasion percolation
(IP) (see Feder, 1988), with the important difference that here growth occurs from multiple
clusters (and not from a single cluster, as in standard IP), while nucleation sites may be-
come activated sequentially in the process. Two cases were considered, an “instantaneous”
nucleation, in which all sites to be activated were activated simultaneously at the onset of
the process, and a “sequential” nucleation, in which sites were activated gradually during
the process.

Instantaneous Nucleation

In this case, the size distribution of cavities is irrelevant (or equivalently, the distribution
of sites contains a very narrow, delta function-like, region). Also, in the absence of pressure
decline rate effects, the actual time of activation is not relevant. The process is parametrized
by the nucleation fraction, f,, defined as

N
fo=13 3)
where N denotes the number of sites activated. In the simulation, this was accomplished
by randomly occupying with gas a fraction f, of pore bodies. Subsequent to the onset of
nucleation, the gas clusters grow following the above-mentioned percolation rules, in which
the size of the throat neighboring a gas-liquid interface is the controlling parameter.

Sequential Nucleation

When the sites are not activated all at once, the specific size distributions of pore throats
and cavities become important. The simulation proceeds by first activating the largest nucle-
ation site in the lattice. During the process, either a gas cluster grows or another nucleation
site is activated. This is determined by whether or not there exists among the perimeter
throats of the cluster a pore throat with size larger than the (currently) available largest
nucleation site. If there exists, growth occurs without activation of that site. Otherwise, the
nucleation site is activated and the new gas cluster becomes part of the growth process. It
is apparent that the particular form of the size distributions and the degree of overlap are
key parameters to this process.

Typical simulations were carried out using Rayleigh or uniformly distributed sizes (Figure
3). The Rayleigh distributions for throats and cavities have the form
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Here, the important parameter is the ratio 3, of mean sizes

p="2 (5)

We must note that in the simulations of sequential nucleation, the nucleation fraction f,
denotes the final value of the fraction of sites nucleated when the critical gas saturation is
reached (namely, when a sample-spanning cluster forms). Contrary to the previous problem,
however, this value is not fixed a priori, but varies for different processes. In the typi-
cal simulations reported here, the variation of f, is accomplished by considering fixed size
distributions (for example of the Rayleigh type) and by varying the ratio of mean sizes, 8.

b. Local Percolation

Simulations were also performed by considering mass transfer effects and the competition
between clusters. In this case, individual clusters grow by following local percolation rules
(namely in each cluster the throat to be penetrated next is the largest), however, different
clusters grow at the different rates dictated by the rate of mass transfer to them. Thus,
the order by which pore throats in different clusters are invaded is not only affected by
capillarity but also by the rates of mass transfer to individual clusters. At conditions of
quasistatic diffusion, mass transfer can be simulated by a random walk (which is obtained
using the well-known DLA algorithm, Feder, 1988). Then, the process of cluster growth
would be a combination of percolation and DLA rules. The rate of growth of a given
cluster is taken to be proportional to the number of walkers that reach that cluster, which
is also another expression of the mass flow rate reaching the cluster. This rate will be
affected from the competition from other clusters, which here is simulated by the frequency
of collisions between the walker and the various clusters. However, each cluster grows locally
by invading the throat with the smallest capillary resistance (largest radius), thus following
local percolation rules. Two different random walk methods were used: one in which the
walkers originate from the perimeter of the lattice, which essentially corresponds to a fixed
supersaturation applied to the perimeter, and another in which the walkers originate from
random points within the lattice (2 modified DLA algorithm). The latter can be shown
to mimic processes at constant rates of decline of the supersaturation, namely at constant
pressure decline rates. The pattern of Figure 3 is obtained using such an algorithm. Because
it is actually more relevant to a physical process, we will only report results using the modified
DLA algorithm. Note though, that in all these problems, only instantaneous nucleation was
considered, as sequential activation requires knowledge of both pressure and concentration
fields, which these rule-based algorithms cannot supply. More details can be found in Li and
Yortsos (1995a).
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RESULTS AND DISCUSSION

As previously mentioned, the simulations at global percolation were analysed to check
two hypotheses. The hypothesis of Yortsos and Parlar (1989) states that the onset of critical
gas saturation corresponds to the standard condition of percolation, namely that at that
point the percolation probability p is equal to the lattice percolation threshold, p.. The
definition of percolation probability is

p= /r:o ap(r)dr (6)

where 74 is the minimum size of gas-occupied throats at any stage of the process. The
hypothesis states that at S,., we shall have

/rooc ap(r)dr = p, (7)

4,
In 3-D cubic lattices, the accepted value of p, for bond percolation is approximately 0.25
(Stauffer, 1985). Table 1 presents multiple realization results for the average value of p at
the onset of the critical gas saturation in 3-D cubic lattices for the case of instantaneous
nucleation and for different nucleation fractions. Also shown is the standard deviation ob-
tained. The results show that as the nucleation fraction increases, the average value of p
approaches the expected p. value for 3-D bond percolation, with a standard deviation that
diminishes as the nucleation fraction (and the lattice size) increase. As is typical of these
spatially uncorrelated problems, the standard deviation approaches asymptotically zero at
sufficiently large values of the lattice size. When only a few nucleation centers are involved,
the percolation threshold is approached from above (as pertains to an IP process). However,
in the case of multiple nucleation centers, the threshold is approached from below (as in the
case of Ordinary Percolation (OP)). Similar conclusions were reached from 2-D simulations
(Table 2, where the expected percolation threshold p. is 0.5) as well as for the case of 3-D
percolation with sequential nucleation (Table 3). The latter case was performed by varying
the ratio f3, as discussed above. The fact that the particular order of nucleation sequence
does not affect the percolation threshold supports the validity of the hypothesis under rather
general conditions. We conclude that the results in Tables 1-3 support this premise of Yortsos
and Parlar (1989). This is of importance for the subsequent development of a relationship
between S, and f,.

The second hypothesis tested in the simulations involves the variation of the critical gas
saturation with f;, which was conjectured by Li and Yortsos (1995a) to have the following
relationship

Seel(L; f3) = (const) LD + (const) fu™ ¥ (8)

where D is the mass fractal dimension of the percolation cluster (equal to 1.89 for 2-D OP,
to 1.82 for 2-D IP with trapping, and to 2.53 for 3-D OP or IP, with or without trapping),
and the prefactors are numerical constants. The arguments leading to this equation are as
follows: In the limit of very small f,, for instance with one nucleation site only, the critical
gas saturation corresponds to the volume fraction of the percolation cluster only, hence it
must satisfy the same scaling as the latter, namely
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Sye(L;0) ~ LP-E (9)

(for example, see Feder, 1988). Incidentally, we may point out that (9) also provides the
scaling with sample size of the “critical gas saturation” in external drives. Note that in this
limit, the value approaches zero as the lattice size increases (although the rate of approach
is algebraic and rather slow, e.g. S;c ~ L~ in 2-D). However, when the nucleation
fraction increases, the main contribution to S, arises from finite clusters growing around
the nucleation sites and not from the percolation cluster. On the average, these clusters
have a linear size proportional to the average spacing between nucleation centers, {,, where

L
lg ~ fq B, as can be readily shown. Each of them contributes a total of lf pores occupied
by gas, thus the overall contribution to S, would be

Seel003 fa) ~ f1 % (10)

Note that in this limit, there is a very sensitive dependence of Sy on f; at small f,, in view
of the small exponents in 2-D and 3-D. (For example, equation (10) reads S, ~ fi®°® and
Sge ~ f2*%, in 2-D and 3-D, respectively). The implication is that most of the variation of
Sge will occur in a range of very small values of f,. Li and Yortsos (1995a) proposed equation
(8) as a linear superposition of the two expressions (9) and (10).

Results from the simulations with instantaneous nucleation are shown in Figure 4. We
used 100, 50 and 10 different realizations for the three different sizes 20x20x20, 30x30x30
and 40x40x40, respectively. The largest nucleation fraction used is approximately 0.24,
corresponding to a quite large vah;e of Sgc. To test the theoretical prediction (8) the results

were plotted vs. the variable f; “F_ We observe that the resulting curves have two qualita-
tively different regimes: An almost flat regime, at low f,, where the critical gas saturation

is insensitive to fql % and only depends (weakly) on the lattice size. And another regime at
larger f,. where a straight line behavior is well obeyed. For a given nucleation fraction, Sy
is shown to slightly increase as the size increases. Figure 5 shows the standard deviation of
Sge. Its relatively small value and its decreasing trend as the lattice size increases, indicate
the deterministic nature of the results obtained.

Results from simulations with sequential nucleation are shown in Figure 6. Rayleigh
distributions were used for throats and cavities. Even though nucleation occurs sequentially,
the overall behavior is very similar, if not identical, to that for instantaneous nucleation. Flat
and straight line regimes are clearly distinguished and a cross-over region can be identified
with properties similar to the previous. Figure 7 shows simulation results for sequential
nucleation but with a uniform distribution of throats and cavity sizes in a 20x20x20 lattice.
Also in this case, the results are very similar to the previous (Figures 4, 6).

The behavior shown in Figures 4-7 supports the validity of the two limits (9) and (10),
but not of the composite curve (8) proposed by Li and Yortsos (1995a). Instead, it appears
that Sy, can be modeled by a cross-over function, gg(z), where

Soe ~ LPEgp(f, L) (11)

and the function gz depends on the dimensionality and has the scaling behavior
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ge(z) ~const as z<K1 ; gg(z)~ 2F as z3>1 (12)

We tested this relation by plotting the numerical results obtained in a Soc.LZ~P vs. f,LF plot
(Figures 8a and 8b for 2-D and 3-D, respectively). A variety of results for instantaneous or
sequential nucleations and for different lattice sizes are plotted. It is shown that conjecture
(12) for the scaling function gg(z) is well satisfied. The data from the various simulations
collapse into a single scaling curve with the properties indicated in (12). In particular the
asymptotic approach to a straight line with the predicted slope is apparent (particularly in
2-D, where much larger sizes can be used in the computations).
Equation (11) suggests that there is a cross-over nucleation fraction, f}, scaling as

fi~L7F (13)

which delineates the two regimes. From the definition of the nucleation fraction, this further
implies that cross-over occurs after a finite number of nucleation centers have been activated.
Figure 4 shows that this occurs approximately at a number of about 12 centers, for the
particular simulations, with the flat regime reached when only one or two nucleation centers
are activated. Equation (13) shows that in the limit of very large lattice sizes, the cross-over
point f vanishes, hence in this limit, the critical gas saturation would approach the relation
1-2

Sec(005 fo) = fo F (14)
which is the same as equation (10) but with the prefactor equal to 1. Figures 4-7 and
the limiting equation (14) suggest that the dependence of S, on the nucleation fraction
fq 1s independent (except for some finite-size effects) of the nucleation sequence or the size
distributions, and only depends on the final fraction of sites activated (nucleated) when the
critical gas saturation is reached. Equation (14) is the main result of this paper.

The independence of the limiting results to the particular size distributions used can
be proved readily by considering the case of instantaneous nucleation. The keys to the
proof utilize the concept of percolation probability p defined in (7). In their study using
Bethe lattices, Yortsos and Parlar (1989) showed that the saturation curves originating from
different activation centers depend only on p and the initial fraction of activated centers. In
our terminology, their results read as

Sq = X(p; fq) (15)

where X is an accessibility function that depends on the lattice and the dimensionality, but
not on the throat size distribution. This result was also verified for regular lattices by Du
(1996) using numerical simulations. Since the onset of critical gas saturation corresponds to
the particular limit p = p,, it follows that for a fixed lattice geometry, S,. = X(p; f,) only
depends on f, and it is independent of the size distribution used. Here, it was assumed that
all sites are of equal volumes and that there exists no site-bond correlation. Violation of this
assumption would certainly affect the universality claimed.

A similar argument can be used to show the independence of (14) from the particular
nucleation sequence. At the onset of Sg, the smallest throat radius penetrated is 74, given
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by equation (7). Consider, now, two different nucleation sequences, with the same overall
fraction f, activated at S,.. We have

fo= [ eulrar (16)

4,

which derives from the fact that all cavity sizes larger than ry. must be activated before
Sy is reached. As long as these are randomly distributed, their contribution to S, will
on average be the same, since each cluster emanating from any such nucleation center will
consist of penetrated throats of radius larger than ry.. The sequence of nucleation may
affect the degree of overlap of various clusters. However, the overall result will on average
be independent of it.

Equation (14) represents an important result. Its utility in a practical application, how-
ever, requires knowledge of the cavity and throat size distributions. Indeed, equation (7)
indirectly defines 74, which upon substitution in (16) determines f,, which is used in turn to
evaluate Sy in (14). It is not difficult to see that different distributions would yield different
fy, thus different Sy.. Yortsos and Parlar (1989) took the ad hoc model that the size of each
cavity is proportional to its host pore throat, from which they obtained the variation of S,
in terms of the parameter B for a Bethe lattice. In this paper, we will use the previous

Rayleigh distributions to relate the critical gas saturation to 3 as follows. Solving for r4. in
(7) we find

41np, d
Tde = Tb (— - ) (17)
from which the nucleation fraction at S, is obtained
fo= Pf - (18)
thus,
_Dyg- -
Spe =pl B’ ’ (= 0.25%1%7" for 3 — D cubic lattices) (19)

Of course, different expressions than (19) will be otained if we use different size distributions
(for example, uniform, etc.). Equation (19) shows that S, increases as the coordination
number of the lattice, Z, decreases which should be expected given the importance of the
lattice connectivity (and where we note that for 3-D, p. = %), and as the ratio # between
the characteristic cavity and pore sizes increases (which leads to an increasing f,). Equation
(refnew) is plotted in Figure 9 which shows the variation of Sg. vs. 8 for a 3-D cubic lattice.
It is noted that the critical gas saturation depends sensitively on § at small values of the
latter.

The above results were obtained assuming a global percolation regime. When this as-
sumption is not valid, the competition for solute and mass transfer in the system will affect
the rates of growth of individual clusters. We simulated such processes using two rule-based
DLA algorithms, which mimic quasi-static diffusion (Li and Yortsos, 1995a). The difference
between the two algorithms is that the first (percolation-DLA) corresponds to a problem of
fixed far-field supersaturation, while the second (percolation-modified DLA) corresponds to
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a problem of constant pressure decline rate in the far-field. Details of the resulting patterns
are discussed in Li and Yortsos (1995a). Only the instantaneous nucleation problem was
simulated.

Results from different realizations in a 30x30x30 lattice are shown in Figure 10 for the
percolation-modified DLA case (see also Figure 3 for a typical pattern evolution in this
case). The results on the mean value can be fitted using the same equations as for the global
percolation case and indicate good agreement with equation (11). The percolation-modified
DLA regime shows an excellent fit, which leads us to believe that the behavior at large
lattice sizes would become identical to (14). The results for the percolation-DLA regime
also indicate a straight line in the region of low f,. However, this line does not pass from
the point (1,1) and it is unclear whether the behavior at large L for the percolation-DLA
regime would collapse to equation (14). Given that this regime actually represents the rather
unrealistic case of a constant supersaturation, we will not discuss it further.

The fact that incorporation of cluster competition and mass transfer does not significantly
affect the S,c-f, relationship is, at first glance, surprising. A possible explanation, at least
for the modified-DLA case, which corresponds to the constant pressure decline rate, is the
following: At very small nucleation fractions, the growth is not affected by mass transfer (for
example, consider the trivial limit of only one nucleation center). At larger fractions, the
spacing between growing clusters is small, the availability of solute is about the same to all
clusters, and on average the process behaves as in the global percolation case. It is unclear
whether or not the same behavior will be also shown when sequential nucleation is allowed.
For example, in a constant pressure decline rate process, we expect that as the pressure
decline rate increases, there is a higher probability for the activation of new nucleation sites
during the evolution of the process, hence we expect a larger nucleation fraction at S
(and possibly a larger S;.) as the pressure decline rate increases. For the problem to show
the same behavior as above, namely for Sy to be independent of the particular nucleation
sequence, requires that when a new nucleation center is activated, there is sufficient mass
flux to support the growth of the cluster from that center, which will ensue due to the likely
strong local supersaturation. At least at early stages of such growth, this condition will be
enforced, as capillary thresholds of pore throats are more likely to be exceeded (hence the
cluster to grow) when the local concentration C is smaller (compare with equations (1)-(2)),
which is also a condition for larger diffusive fluxes to the cluster. It is likely, therefore, that
the sequential nucleation case will result in a similar dependence as (14). Here, however, the
nucleation fraction f, would also depend in a non-trivial manner on the pressure decline rate,
and not only on the geometrical characteristics of the pore and cavity sizes. This important
effect is considered in a separate study (Du and Yortsos, 1997).

The above results are valid for spatially uncorrelated pore throats. Spatial correlations
will affect the development of the gas phase clusters, much like in a drainage process, although
the two additional aspects of growth from multiple sites and mass transfer of the present
problem will also be influenced. Spatial correlations can act in a two-fold manner: To modify
the percolation threshold, typically towards lower values, as the extent of the correlation
increases, and to make the process stochastic, if for example the spatial correlation is of
the self-affine type (e.g. fBm fields, see Du et al., 1996). Since it is directly related to
the percolation threshold (compare with equations (7) and (16)), the critical gas saturation
will also be affected by the degree of correlation. In particular, it will become realization-
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dependent for the case of large correlation lengths. A similar effect would be exerted if the
local microstructure is anisotropic, which is the case in many natural rocks. In such cases,
the present results must be interpreted with care.

A wide range of experimental values for Sy has been reported (from less than 1% to as
high as 30%). This range is well within the present theory, given the appropriate parameter
values (see for example Figure 9). Unfortunately, it is difficult to have a priori knoweldge of
the precise nucleation characteristics of the porous medium (for example, of the nucleation
cavity size distribution), thus a direct comparison of the theory with experiments is not
possible at present. The theory does predict, however, that even rather small values in the
nucleation fraction can give non-negligible critical gas saturations. It also calls attention to
the fact that finite-size effects associated with the sample, where measurements are made,

can be important and need to be removed, e.g. by using a scaling relation of the type shown
in (11).

CONCLUSIONS

In this paper, we reported on a study of the sensitivity of the critical gas saturation
on the nucleation characteristics of the porous medium in a solution gas-drive process. It
was found that the onset of the critical gas saturation coincides with the condition that the
percolation probability p equals the percolation threshold of the lattice, p., which confirms
the original hypothesis of Yortsos and Parlar (1989). The dependence of the critical gas

saturation on the final nucleation fraction (namely the fraction of activated sites) was stud-

. _D
ied and was found to obey for a sufficiently large system the power-law scaling Sg. = fql E,

where D is the fractal dimension of the percolation cluster. This dependence was established
regardless of the particular nucleation sequence (instantaneous or sequential) or the partic-
ular regime of bubble growth (global or local percolation, with or without dominant mas
transfer characteristics). It was assumed, however, that the growth pattern of each cluster
is controlled locally by capillarity, hence percolation theory results apply. This assumption
is expected to lose validity at large pressure decline rates (for instance for the very sharp
decline rates of Bora et al., 1997). The result found indicates that the critical gas saturation
is very sensitive to small values of the nucleation fraction, but is less sensitive to the latter at
larger values. The dependence on the nucleation fraction makes the critical gas saturation in
internal drives qualitatively different from its value in external drives, where the formation
of gas connectivity is associated with invasion percolation and depends only on the sample
size, e.g. as described in (9).

NOMENCLATURE

C =  Concentration of solute (dissolved gas)
D = Fractal dimension

E = Euclidean dimension

fo = Nucleation fraction

K = Solubility constant
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Length

Pore network linear size

Number of activated sites

Percolation probability

Pressure

Pore or cavity size

Critical gas saturation

Probability density function

Ratio of characteristic cavity and throat sizes
Interfacial tension

o

o

Subscripts
=  Pore throat
=  Critical
=  Liquid
=  Vapor
= Cavity
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Number of | Nucleation Mean | Std of
Size realizations | fraction(number) | p. Pe
20x20x20 | 100 1.250x107%(1) 0.3122 | 0.0705
2.500x107%(2) 0.2775 | 0.0323
1.250x10~2(100) | 0.2434 | 0.0109
1.875x1072(150) | 0.2431 | 0.0113
2.500x107*(2000) | 0.2431 | 0.0113
30x30x30 | 50 3.704x107°(1) 0.2924 | 0.0406
7.407x107°(2) 0.2737 | 0.0264
3.704x1073(100) | 0.2496 | 0.0058
5.556x10~%(150) | 0.2495 | 0.0058
1.852x1072(500) | 0.2495 | 0.0058

Table 1: The mean value of the percolation probability at the onset of the critical gas
saturation and its standard deviation for 3-D cubic lattices and instantaneous nucleation
with various nucleation fractions. Two different lattice sizes and multiple realizations were
performed.

Number of | Nucleation Mean | Std of

Size realizations | fraction(number) | p. Pe
100x100 | 100 1.000x107*%(1) 0.5151 | 0.0341
1.000x1073(10) | 0.4953 | 0.0100
1.000x10~2(100) | 0.4950 | 0.0099
20 5.000x1072(500) | 0.4973 | 0.0091
1.000(10000) 0.4973 | 0.0091
200x200 | 50 2.500x10°%(1) 0.5087 | 0.0231
1.000x1073(40) | 0.4967 | 0.0077
5.000x1073(200) | 0.4967 | 0.0077
20 0.500(20000) 0.4949 | 0.0071

Table 2: The mean value of the percolation probability at the onset of the critical gas
saturation and its standard deviation for 2-D square lattices and instantaneous nucleation
with various nucleation fractions. Two different lattice sizes and multiple realizations were
performed.

37

1




Number of | Nucleation Mean | Std of
Size realizations | fraction(number) Pe Pe
20x20x20 | 100 1.263x107%(1.01) 0.3104 | 0.0662
3.125x107%(2.50) 0.2669 | 0.0174
1.539x107%(123.12) | 0.2432 | 0.0112
2.397x107%(191.74) | 0.2431 | 0.0113
7.592x1072(607.39) | 0.2431 | 0.0113
30x30x30 | 20 4.259x107°(1.15) 0.2783 | 0.0279
1.870x107%(5.05) 0.2581 | 0.0072
3.737x1072(100.90) | 0.2499 | 0.0047
7.640%x1072(2062.90) | 0.2499 | 0.0047
40x40x40 | 20 1.875x107°(1.20) 0.2675 | 0.0190
7.422x107°(4.75) 0.2543 | 0.0076
2.003x1073(128.20) | 0.2490 | 0.0042
1.571x1072(1005.20) | 0.2490 | 0.0042

Table 3: The mean value of the percolation probability at the onset of the critical gas
saturation and its standard deviation for 3-D cubic lattices and sequential nucleation with

various nucleation fractions. Three different lattice sizes and multiple realizations were

performed.
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Figure 1: Schematic of a nucleation site in a host pore body.
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Figure 2: Evolution of bubble growth patterns as a function of time (from Li and Yortsos,
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1995a). The pattern follows percolation-modified DLA rules.
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Figure 3: Characteristic Rayleigh cavity and pore throat size distributions. The sizes are

dimensionless.
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Figure 4: The mean value of the critical gas saturation as a function of the nucleation
fraction for the case of instantaneous nucleation and a Rayleigh distribution of throats and
cavity sizes. Circles, crosses and dots refer to sizes 20%x20x20, 30x30x30 and 40x40x40,
respectively.
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Figure 5: The standard deviation of the critical gas saturation as a function of the critical
gas saturation for the case of instantaneous nucleation. Circles, crosses and dots refer to
sizes 20x20x20, 30x30x30 and 40x40x40, respectively.
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Figure 6: The mean value of the critical gas saturation as a function of the nucleation fraction
for the case of sequential nucleation and a Rayleigh distribution of throats and cavity sizes.
Circles. crosses and dots refer to sizes 20x20x20, 30x30x30 and 40x40x40, respectively.
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Figure 7: The critical gas saturation as a function of the nucleation fraction for the case of
sequential nucleation and-a uniform distribution of throats and cavity sizes. Circles denote
mean values, dots denote the standard deviation. The simulations were done in a 20x20x20
lattice.
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Figure 8: Plot of SecLE~P vs. f,LF for 2-D (a) and 3-D (b) simulations, respectively. The
solid line is the theoretical straight line asymptote with slope 0.055 and 0.1566 in the re-
spective dimensions. Results for different lattice sizes, and instantaneous and sequential
nucleation are shown. In (a) circles and crosses refer to sizes 200x200 and 300x300 respec-
tively at instantaneous nucleation. In (b) stars refer to instantaneous nucleation, circles refer

to sequential nucleation and crosses refer to sequential nucleation and a uniform distribution
for a(r) and ap(r).
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Figure 9: The variation of the critical gas saturation as a function of the geometric parameter
B, which is the ratio of the characteristic cavity to throat sizes.

47

N S L MR WD el N o DML SRR
o0 NN § AU IV SR Y S 6 2. A4 v e

g T LY f



0.9

0.7

T

T

0.6

0.2

T

0.1

0 ] /] 1 1 i 1 1 i 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fq**(E-D)/E

Figure 10: The critical gas saturation as a function of the nucleation fraction for the case
of a Percolation- Modified DLA process at instantaneous nucleation in a 30x30x30 lattice.
Circles denote mean values, dots denote the standard deviation.
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3. A SCALING THEORY OF DRYING IN POROUS MEDIA

LN. Tsimpanogiannis and Y.C. Yortsos
(with the collaboration of S. Poulou, N. Kanellopoulos and A.K. Stubos)

ABSTRACT

Concepts of immiscible displacements in porous media driven by mass transfer are utilized
to model drying of porous media. Visualization experiments of drying in 2-D glass micro-
models are conducted to identify pore-scale mechanisms. Then, a pore network approach is
used to analyze the advancing drying front. It is shown that in a porous medium, capillarity
induces a flow which effectively limits the extent of the front, which would otherwise be of
the percolation type, to a finite width. In conjuction with the predictions of a macroscale
stable front, obtained from a linear stability analysis, the process is shown to be equivalent
to Invasion Percolation in a Stabilizing Gradient (IPSG). A power-law scaling relation of the
front width with a diffusion-based capillary number is also obtained. This capillary num-
ber reflects the fact that drying is controlled by diffusion in contrast to external drainage.
The scaling exponent predicted is compatible with the experimental results of Shaw [1]. A
framework for a continuum description of the upstream drying regimes is also developed.

INTRODUCTION

The drying of porous media is a problem of significant scientific and applied interest.
Chen and Pei [2] note that drying is one of the most energy consuming processes in industry.
Applications include the drying of granular materials such as soils, rocks, minerals, building
materials and ceramic powders; drying processes in the wood (Simpson [3, 4]), paper and
textile industry; coating technology; and the drying of foodstuff (Fortes and Okos [5]) and
pharmaceutical products. In a different context, in-situ drying of porous media is involved
in recent methods for the remediation of contaminated soils by soil vapor extraction or
soil venting (Ho and Udell [6]), as well as in the recovery of volitile hydrocarbons from
underground oil reservoirs by gas injection (Le Romancer et al. [7], Le Gallo et al. [8]).

The development of a general mathematical framework to model drying of porous media
has been a rather challenging research topic for several decades (Waananen et al. [9]). Al-
though a plethora of methods have been presented, and while industrial designers are faced
with the demand to design complicated processes regarding “real” problems, there are still
many unresolved questions, even for “simpler” problems (Prat [10]). Traditionally, the de-
scription of drying in porous media is based on phenomenological approaches that consider
the medium as a structureless continuum. In these, partial differential equations are postu-
lated that relate the evolution in spacetime of volume-averaged quantities, such as moisture
content and temperature. Phenomenological and empirical parameters are then used to re-
late fluxes to gradients, often drawn from an analogy with non-equilibrium thermodynamics
(for example, see Luikov [11]). However, in these approaches, the pore microstructure and
the underlying phenomena, which are key to the quantitative understanding of the process,
are essentially ignored.

On a fundamental level, drying is a phase chage of a (usually) one-component liquid
into a (usually) two-component gas, and involves at various stages the motion (receding) of
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individual gas-liquid menisci (see schematic of Figure 1). The menisci reside in the porespace
of the porous medium and are subject to the interfacial forces between liquid, gas and solid
surfaces. Due to the disorder in the porespace geometry, however, their distribution is also
disordered in general. The physical processes involve evaporation of the volatile liquid in the
gas phase, driven by concentration gradients, countercurrent diffusion in the gas, possible
liquid flow through connected films, and the accompanying receding of menisci. All these
interactions are influenced by the porous medium microstructure to a significant degree.

In general, four different spatial regimes can be distinguished during a drying process
(Figure 2): A far-field regime consisting of the initial liquid phase; a regime where the
liquid phase is macroscopically connected and where both gas and liquid phases are “macro-
scopically continuous”; a third regime in which the liquid phase has been disconnected in
individual clusters of variable sizes (blobs) as a result of drying; and a fourth regime con-
sisting of the liquid phase in the form of pendular rings or films covering the solid surface,
the thickness of which is progressively reduced, towards a “totally dry” regime. In the last
three regimes the gas phase is macroscopically continuous. Shaw [1] has also postulated that
liquid films may provide hydraulic connectivity to the liquid phase in all three regimes. It is
apparent that an appropriate account of the various pore-scale events in all these regimes is
fundamental to the accurate representation of any macroscopic description (Whitaker [12]).

Pore-network approaches for describing drying of porous media were recently proposed
by Nowicki et al. [13] and in a series of papers by Prat and coworkers (Prat [14, 15],
Laurindo and Prat [16, 17]). In a related context, Pot et al. [18] used lattice-gas cellular
automata to simulate evaporation phenomena in 2-D porous media. Nowicki et al. [13]
developed a rather comprehensive pore-network simulation of the process, and accounted for
both capillary and viscous forces. However, the authors did not dwelve on the particular
patterns that develop or on their effect on the drying rates. Prat [14, 15] and Laurindo
and Prat [16, 17] studied pattern formation during drying assuming capillary forces only
and ignoring viscous forces. The importance of film flows was also discussed [17]. Based
on the assumption of percolation patterns and under isothermal conditions, they proceeded
to compute evaporation and drying rates by solving a quasi-static diffusion equation in the
gas phase. However, earlier drying experiments in glass-bead packs by Shaw [1] suggested
that viscous forces are not negligible, and in fact are needed to explain the formation of a
front width (separating continuous liquid from gas) of a finite size. This, Shaw [1] attempted
to scale using scaling expressions obtained from external drainage (see below). Despite the
limitation on viscous forces, however, Prat’s studies are important in that they represent the
first attempt to theoretically characterize drying patterns and their rate of change in porous
media.

As in other processes involving two-phase, immiscible flows in porous media, the following
two aspects of drying patterns need to be understood: (i) Their geometrical structure, which
dictates transport and capacitance; and (ii) their rates of change. This is the main motivation
of this paper. We consider the application of a pore-network approach, as in Nowicki et
al.[13], Prat [14, 15], and Laurindo and Prat [16], but with specific objectives to understand
the structure of drying patterns, particularly in the frontal region. From such an analysis,
the derivation of effective macroscopic models can then be obtained. Drying, involving gas-
liquid interfaces, can benefit from advances in the analogous problem of external drainage,
which is reviewed below. What is novel in drying, however, is the additional effect of mass
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transfer in the gas phase, which actually drives the process. This needs to be analysed in
some detail.

The paper is organized as follows: First, we give a brief review of recent findings in
isothermal drainage processes, which have a direct bearing on drying. Then, experiments
in 2-D micromodel geometries are presented to visualize mechanisms during drying and to
help in the development of the theory. Based on the experimental observations, a theoretical
approach is subsequently developed, which combines arguments borrowed from isothermal
drainage and from the related bubble growth problem, where mass transfer is a key process.
We use scaling arguments to show that drying is actually a process of Invasion Percolation in
a Stabilizing Gradient (IPSG) (see below for a definition), from which we can infer the scaling
of the front width as a function of the drying parameters. To demonstrate the transition from
a percolation-only pattern, which was studied by Prat, to a stabilizing gradient and an IPSG,
a linear stability analysis of the front in the appropriate geometries must be performed. This
analysis will precede the main theoretical developments. We close by providing a framework
for a macroscopic description based on transverse averages, and by commenting on the
modeling of the other regimes.

We show that the scaling so obtained is compatible with Shaw’s [1] experimental results.
Thus, although near the leading edge of the front, the displacement pattern will be of the
percolation type (assumed by Prat and co-workers to be valid for the entire pattern), as
the width of the front increases, viscous forces become increasingly important, leading to a
displacement described by IPSG. Our analysis also sheds light to a process of liquid flow,
termed “capillary pumping” by Le Romancer et al. [7], in their modeling of oil recovery from
fractured reservoirs by gas injection. We show that this effect is actually the consequence
of accounting for both capillary and viscous terms in the process. As in previous pore-scale
studies in drying (Nowicki et al. [13], Prat [15]), our analysis is restricted to isothermal
problems. We also neglect convection in the gas phase, which is expected to be progressively
of secondary importance, and gravity. The effect of the latter can be directly incorporated.
However, effects of heat transfer and convection need a separate analysis, which will be
attempted in a future study.

PRELIMINARIES

Drying involves gas-liquid interfaces and mass transfer and should be subject to an anal-
ysis similar to external drainage and to bubble growth in porous media. Because of the
expected similarities, we briefly review in this section recent advances in these two areas.

Consider, first, drainage, namely the displacement of a wetting phase by a non-wetting
phase in a porous medium in the absence of phase change. In drainage, menisci reside in
pores or at the entrance of pore-throats with a curvature corresponding to the local capillary
pressure, defined as the difference between the non-wetting (gas) and wetting (liquid) phase
pressures,

P.= P — Py =29H (1)

Here, =y is the interfacial tension between the fluids, H is the mean curvature of the meniscus
and a zero contact angle was assumed. In the absence of buyoancy and/or viscous forces, the
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capillary pressure; thus the mean curvature, are spatially uniform. A meniscus will penetrate
a pore throat, adjacent to which it resides, when the capillary pressure first exceeds the
capillary entry pressure for that pore throat (roughly equal to 2vy/r, where r is the pore
throat size). In drainage at constant rate, the sequence of pore penetration can be modeled
by Invasion Percolation (IP), where at each time step only one pore throat is invaded, that
with the least capillary resistance (or, equivalently, the largest radius) among all throats
at the perimeter of the interface. During this step, all other menisci remain stationary or
fluctuate slightly. This type of displacement gives rise to a self-similar fractal pattern in the
displacing phase, which eventually approaches that of the percolation cluster. The properties
of the latter have been discussed in detail in various publications [19, 20]. Because of the
self-similarity involved, however, defining a mean-front position is not operationally useful.

However, if gravity and/or viscous forces are also important, a percolation pattern will
not develop over the entire region of displacement. When only gravity forces are important,
the capillary pressure will vary with the elevation A of the interface, since P, = g,Aph, where
gz is the component of gravity in the direction of displacement and Ap = p,, — pnw- Then,
the displacement acquires the features of a different pattern, namely Invasion Percolation in
a Gradient (IPG) [21, 22, 23, 24, 25, 26]. In this case, the competition between gravity and
capillary forces is expressed through the Bond number

g=Dpk
> (2)

where k is the permeability of the porous medium (which is roughly proportional to the
square of a mean pore size k ~ r2,, Katz and Thompson, [27]). Now, one needs to further -
distinguish two cases:

(i) If B > 0, for example, in the downwards displacement of a heavier by a lighter fluid,
the two phases are separated by a front of finite width, og, which scales with the Bond
number as [21, 22]

B =

og ~ B HT (3)

where v is the correlation length exponent of percolation. For a non-zero B, the front width
is finite. Then, the front is not self-similar, but rather self-affine [29] (Fig. 3a). Within
the front, the pattern has the fractal characteristics of the percolation cluster. However,
upstream of the front, the pattern is compact. Thus, a mean front position can be usefully
defined. In essence, this reflects the transition of the displacement from an IP to a piston-like
pattern. The latter is the pattern that develops when only gravity (and not capillarity) acts
(and which would be piston-like in this case). We shall refer to this as Invasion Percolation in
a Stabilizing Gradient (IPSG). Hulin et al. [23] experimentally demonstrated the application
of IPG in a drainage problem stabilized by gravity.

(ii) On the other hand, if B < 0, for example, in the downwards displacement of a lighter
by a heavier fluid, the displacement is Invasion Percolation in a Destabilizing Gradient
(IPDG). This pattern has the different features of capillary fingering (Fig. 3b), in which
the displacement occurs by invading fingers of a mean width still given by (3), the local
characteristics of which are still controlled by percolation. This regime has been discussed
in detail in Frette et al. [30] and Meakin et al. [31].
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The effect of viscous forces is more complex. At larger scales, where viscous effects
predominate, two limiting patterns are expected, Piston-like Displacement (PD) and Viscous
Fingering (VF), depending on whether the ratio M = 2=, between the viscosities of the
two fluids, is smaller or greater than 1, respectively. Essentially, this reflects the Saffman-
Taylor instability [32]. At smaller scales, however, where capillary forces are important, the
problem becomes similar to IPSG (case of small M) or IPDG (case of large M) (Yortsos et
al., [33], Xu et al, [34]). In the first case, in particular, fully-developed drainage involves an
advancing front of a finite width, oy, as in the case of stabilizing gravity, followed by a more
compact pattern. The front width can be shown to scale with the front capillary number,
Cap = %2 a5 [28, 34]

8

Carp ~IFCF(D-T)

v ( > ) ®

where v is the front velocity, ¢ denotes viscosity, X is the dimensionless variance of the

pore-size distribution, ¢ is the conductance exponent of percolation and D is the fractal

dimension of the percolation cluster. Values for the various percolation exponents can be

found in classical texts on percolation, for example in Stauffer and Aharony [35]. The

properties of these patterns and the conditions delineating the various regimes were recently
discussed in detail in Yortsos et al. [33] and Xu et al. [34].

Although subject to similar considerations, drying also involves the additional effect of

mass transfer in the gas phase, which actually drives the process. A certain analogy can
be drawn between drying and the problem of bubble growth in porous media, recently
investigated by Li and Yortsos [36, 37], and Satik and Yortsos [38], where the driving force
for phase change and the ensuing growth of the gas phase is diffusion of mass or heat in
the liquid (for the case of solution gas or boiling, respectively). When a bubble (more
properly a gas “cluster”) grows in a porous medium, its pattern at small bubble sizes will
be of the percolation type. However, at larger sizes capillary forces are less significant,
and the displacement pattern is controlled by diffusion and viscous (and gravity) effects
(Satik et al. [41]). Diffusion in the liquid is known to destabilize such a liquid-to-gas phase
change. leading to a Mullins-Sekerka instability (see [39, 40] for the particular application),
thus the pattern gradually becomes of the viscous fingering type. The boundaries in the
parameter space that delineate patterns in bubble growth were described in Satik et al. [41]
by using scaling arguments and pore-network simulations. The same authors also proposed
kinetic expressions to describe the rates of growth of bubble growth patterns. Key to their
description was the modeling of the diffusion process and its coupling with viscous and
capillary phenomena. Such an approach could also be fruitfully used in the context of
drying. -
It could be noted that because it is essentially a process of gas displacing liquid, one
might naively anticipate drying to involve IPDG patterns of the viscous fingering type, in
analogy with external drainage in which the displacing fluid is less viscous, or with the bubble
growth problem at large sizes. However, this is misleading: drying is not driven by external
injection, but by internal diffusion in the gas phase. This differs from external drainage,
but also from bubble growth, where diffusion occurs in the liquid phase. These processes
conspire to give patterns that are characterized by the stabilizing IPSG process, as will be
shown below.
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EXPERIMENTAL

To visualize the mechanisms involved in drying in porous media we conducted exper-
iments in transparent etched-glass micromodels. These micromodels consist of two glass
plates fused together, on one of which a specific square pore network pattern is etched.
Micromodles have been valuable in providing an understanding of the qualitative features
of various displacement processes in porous media (see Buckley [42] for a review). In the
context of phase change, a most recent application involves the bubble growth experiments
reported in Li and Yortsos [36] and the drying experiments by Laurindo and Prat [16]. In
our application, the typical micromode] has size 25 cm x 10 cm, while the etched pores are
channels with an estimated depth of 100 pum. The pore body/throat thickness is spatially
distributed, following a specified Rayleigh distribution, with an average pore throat radius of
450 pym and an average pore body radius of 900 um. These dimensions are specified before
etching the glass plate. Due to imperfections in the glass and the lack of precise control in
etching and fusion, however, the final dimensions are somewhat different. Also, although
originally rectangular, the channels can become “eye-shaped” after fusion, as pointed out
by Chatzis et al. [46] and Vizica and Payatakes [44]. The final shape depends on the time
of fusion among other parameters. Details of the manufacturing procedure can be found in
Chatzis [43]. One entry port and one exit port on opposite sides of the micromodel serve
to inject and recover the fluids. The experimental apparatus, shown in Figure 4, consists
of the micromodel, of two reservoirs for the supply of the liquid and gas phases (denoted in
the Figure as “oil” and “gas”), of a syringe pump, a camera for visualization, a video tape
recorder and a data processing system. Typical liquids used were n-pentane, n-hexane and
distilled water. The gas phase in the experiments was air.

The experiments consist of first saturating the micromodel with the liquid phase and
subsequently displacing it with the gas at relatively high injection rates until the liquid phase
1s macroscopically disconnected from the two ports. At that time the gas injection rate was
decreased to low rates and the drying process commences. This arrangement is actually
different on the macroscopic scale than Shaw’s [1], where only one side is open to flow, there
is no primary drainage or external liquid displacement, and the only mechanism for the
movement of menisci is due to mass transfer. However, the basic drying mechanisms at the
microscale are the same in both experiments. In fact, the theoretical model to be developed
below will pertain to Shaw’s configuration. The main difference is in mass transfer, which
in our experiments can also occur by forced convection due to the particular configuration
(see also Jia et al. [45], for a related application). In most of the experiments, however, the
injection rate was kept quite low (of the order of 0.052 ml/min) resulting into small Peclet
numbers and a predominantly diffusive mass transfer mechanism.

‘Figure 5 shows two snapshots of the interfacial pattern at different times during drying.
The evaporation of the liquid and the resulting receding of the interface at various places
are apparent. We note the existence of many clusters of different sizes, containing macro-
scopically disconnected liquid. The clusters are disordered and reflect the difference in the
capillary characteristics of different pores. The interface is generally “rough”, although it is
difficult to ascertain self-affinity or self-similarity. Important findings from the visualization
experiments included the following:
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(i) Typically, the penetration of gas into the liquid and the receding of the meniscus
occured in the form of sudden jumps, one-at-a-time, which were separated by finite time
intervals. These jumps are similar to “rheon” events in external drainage and reflect the
fact that for a pore to be invaded, a capillary pressure threshold must be exceeded, fol-
lowing which displacement and filling of the adjacent pore body will occur rapidly. During
that time, interfaces pinned by capillarity in other pores are adjusted as a result of liquid
incompressibility (see also below). Rheon events will predominate when the displacement
is controlled by capillarity, as was the case in many of these experiments. When, however,
drying rates are fast, as was the case with the experiments involving n-pentane, or at higher
gas injection rates, the displacement was also found to occur at the same time in more than
one pores, although several interfaces remained pinned during the same time.

(ii) Even though the plan views in Figure 5 indicate gas-only and liquid-only occupied
regions, a careful monitoring of the changes in the liquid-gas interface revealed that liquid
films existed at the surfaces of pores invaded by gas. Figure 6 is a close-up of the gas-liquid
interface, and shows the trace of wetting films left behind during the invasion of a pore
by gas. The existence of films was also indirectly deduced from observing the emptying of
some pores occupied by liquid, which would be topologically impossible in the absence of
connected films. Wetting films in corners and crevices following drainage of a wetting liquid
have been documented in various drainage studies (e.g. see Lenormand et al. [47]). In his
experiments, Shaw [1] inferred that connected liquid films help in the transport of liquid
towards the open edge of the cell where it can evaporate. Prat [14, 15] and Laurindo and
Prat [16, 17] also reported the existense of thin liquid films.

The above mechanisms of drying process will be incorporated in the pore-network theory
to be developed subsequently. Before we proceed, however, it is necessary to understand
large-scale effects of diffusion and mass transfer. These can be studied in the absence of
capillarity and pore microstructure.

FRONT STABILITY IN THE ABSENCE OF CAPILLARITY

It was pointed out in a previous section that while small-scale features of a displacement
process are set by capillarity, larger-scale characteristics are set by transport (such as viscous
flow or diffusion). This is certainly the case both in external drainage (Xu et al. [34]) and in
bubble growth (Satik et al. [41]). The percolation pattern will ultimately (at large capillary
numbers, see also below) evolve into a pattern dictated by the large scale. To understand
this pattern, and thus to infer whether the process will be of the IPSG or the IPDG type,
the stability of drying in an effective porous medium in the absence of capillarity must be
analuzed.

Consider a planar drying front advancing in an isotropic and homogeneous effective
medium, with a geometry that mimics the experiments by Shaw [1], as shown in Figure
7. The liquid phase consists of a vaporizing single component, while the gas phase is a
mixture of two components at constant pressure. A sharp interface seperates gas from lig-
uid, thus for the purposes of this section we ignore effects of microstructure or film flows.
Isothermal conditions are assumed. The top boundary is open to gas flow, has zero molar
concentration of the vaporized liquid and a constant gas pressure. The bottom boundary is
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impermeable to liquid, thus all changes in liquid content are due to drying. We will examine
the stability of the front to transverse perturbations in the absence of capillarity. For the
purposes of this section, which is to reveal macroscopic features, the analysis will be based
on a continuum description. We consider quasi-static diffusion in the gas phase and assume
that the profiles (which are generally time-dependent) are, “frozen” when the perturbation is
imposed. Quasi-static diffusion is expected to be valid when the ratio of the equilibrium con-
centration of the volatile component in the gas phase to its molar density in the liquid phase
1s small, which is the case at low partial pressures (see Appendix). The more general problem
involving unsteady-state diffusion and convection will be described in a separate study (see
also Appendix). Assuming a frozen state during perturbations is a standard approach for
the stability of time-varying base-states (see, for example, Tan and Homsy [48]).

Let the front that separates liquid- from gas-occupied regions be denoted by the following
equation in the notation of Figure 7

]:(z,y,t)EZ—F(y,t)=0 (5)
and recall the definitions
VF
n = oA (6)
and ‘
_ H

for the outer normal (pointing towards the liquid) and the normal velocity at the fronmt,
respectively. The governing equations in the liquid-occupied region involve Darcy’s law for
the flow of the liquid phase

k

wy =——VP (8)

7
from which. and with the use of the continuity equation, we obtain a Laplace equation for
the liquid pressure

V2P =0 (9)

This equation is subject to the following boundary conditions

Pi=P, at z=F(y,t) (10)
where P, i1s the gas pressure, assumed constant, due to the small gas viscosity, and
P
% =0 at z2=1 (11)

where L denotes the longitudinal extent.
For negligibe convection and transient effects the condensible component A satisfies the
quasi-static diffusion equation (see Appendix),
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Vch =0 (12)

where c4 is the concentration of the condensible species (see also Prat [14, 15]). The corre-
sponding boundary conditions are

ca=0 at z=0 (13)

and

CaA=Ce=Tgec at z=F(y,t) (14)

at the inlet and the front, respectively. Here, we defined the equilibrium mole fraction,

Tge = };," , where P, 4 is thé partial pressure of A, and the total gas concentration, ¢, which

because of the assumed constant pressure, can also be taken as a constant (¢ = £% for an
ideal gas, where R is the ideal gas constant and T is absolute temperature).

Concentration and pressure fields are coupled at the interface by mass balances. For the
vaporizing liquid we have

_DAB_TT = —(up, —v,) at z= F(y,t) (15)

where Dyp is the diffusion coefficient, p; is the mass density of the liquid, M is the molecular
weight and n denotes the normal to the interface. The interface is a material surface, thus,

Un = Ugn (16)

The assumption made here is that the liquid consists of a single volatile component and that
convection effects are secondary.

Consider, now, the base state in the absence of perturbations (denoted by superscript
bar). Then, the front is located at z = f() and we readily find the base state

ZCe
c= for 0<z< f(t 17
= 0 (17)
P=P, for ft)<z<L (18)
and
- ceMaDysp
Dp=0,= f = 19
! pif (19)
The latter can be integrated to yield the front location (assuming f(0) = 0)
fe QCe]V—;ADAB ; (20)
!

This expression also results in the quasi-static limit from the more general analysis presented
in the Appendix.

For the stability analysis we assume a “frozen” state at ¢ = %o, take normal modes,
varying as exp(tay + w(t — to)), namely
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¢ = ¢+ €eo(z,t)exp(tay + wt) (21)

P, = P, + ell(z,t)exp(tay + wt) (22)

and

F(y,t) = f(t) + eexp(iay + wt) (23)

and inquire about the sign of the rate of growth, w, of disturbances of wavenumber «. In
the above notation, € has dimensions of length. Substituting (21) to (12) and the boundary
condition (13) gives

o = 2Asinh(az) (24)

The constant A is evaluated by using boundary condition (14) and the base state solution
evaluated at the front location. After some calculations we arrive at the result

_ caesinh(az)

~ " fsinh(af)
Working likewise with the pressure field wee find that II satisfies a Laplace equation, the
solution of which subject to the no-flux and constant pressure conditions at the two bound-
aries, respectively, is identically zero, II = 0. Thus, at this level of approximation, the liquid
phase is stagnant, as intuitively expected. However, consideration of capillarity at. the mi-
croscale (and the interfacial curvature it implies) leads to viscous flow in the liquid phase,
as will be shown below. This flow will set the main features of the drying pattern at the
microscale.

A final substitution of the above into the coupling equation at the front, leads to the

following expression for the rate of growth of disturbances

(25)

. DAB M ACT e X

piftanh(cf)

It is apparent that the rate of growth w is negative, which implies that this displacement is
unconditionally stable. The physical intrepretation of the stability result is straightforward:
If a protuberance of the front into the gas region forms, gas-phase diffusion rates will be
higher at the tip compared to the base, due to the compression of iso-concentration curves
at the tip (Figure 7). In the absence of liquid flow, this will result in a locally larger velocity
at the tip, hence in the smoothing of the protuberance, and in stability. Thus, even though
it is effectively a process of a less viscous fluid displacing a more viscous fluid in a porous
medium (where in external drainage one would expect a viscous fingering instability), the
fact that the process is driven internally by diffusion in the gas phase renders the frontal
displacement a stable process. In a sense, this is analogous to the melting of a solid, in
which the receding interface is also linearly stable (Langer [39]). On the other hand, this
is in contrast with the problem of bubble growth in porous media refered to above, where
the process is also internally driven by diffusion, although in the liquid phase, and where in

<0 (26)
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the absence of capillarity, the problem is linearly unstable (Li and Yortsos [40]). The phase
change analogy with that problem is solidification in a supersaturated solution.

The important implication of the previous analysis is that in the absence of capillary forces
the drying pattern in the porous medium will be piston-like (PD). Because of the relatively
low drying rates in applications, however, capillarity will be important over sufficiently small
scales (compare with Figure 5) and must be considered, as shown below. Before we proceed,
we note that a qualitatively similar result to (26) is also expected in the more general
problem, where net gas phase convection is considered. This analysis, which also includes
spherical geometries, will be considered in a separate study.

FRONT DESCRIPTION USING A PORE-NETWORK ANALYSIS

Consider, now, a description of the frontal region during drying by accounting for the
effect of the pore structure (Figures 5-6). Locally, the interface is described by an equation
similar to (5), across which boundary conditions (15) and (16) apply. However, here menisci
in the porespace must conform to the curvature of the pore in which they reside. Thus,
across the meniscus, liquid and vapor pressures are related through the capillary pressure

2
P,=P,,—77 (27)

where, assuming locally spherical shapes, the mean pore curvature is r. A convection-
diffusion equation describes mass transfer in the vapor phase, while the fluid flow in both
phases is described locally by Stokes’ law. In the following, we will focus on the structure of
the front. For this, capillarity must be considered. We will show, first, that the latter induces
a viscous flow, the magnitude of which dictates the extent of the front and its pattern. Then,
the scaling of the front width and the basic properties of the pattern are discussed.

(1) Capillarity-Induced Flow (Capillary Pumping)

Because of the capillary forces in the constriction of pore throats, a meniscus will not
penetrate a pore throat, for example throat z of radius r,; in Figure 6, until the capillary
pressure across the meniscus exceeds for the first time the capillary barrier of that throat,
3},—"' Until this happens, the normal velocity of this meniscus will be negligible, therefore,
the meniscus will remain pinned. During this period of time, however, diffusion proceeds
over the entire gas-liquid interface, which requires that menisci will be receding in other
pores of size greater than r,; (for example pore j in Figure 6) or along corners containing
non-displaced liquid. Thus, at any time during the process, the drying front will reside in
pores of two different types: (i) Completely Empty (CE) (Figure 8a), in which menisci are
stationary at the pore throats; and (ii) Partly Empty (PE) (Figure 8b), in which menisci are
receding. Partly empty pores are either pore bodies, or pores containing liquid left behind
in cornerns, crevices or films and which might be connected hydraulically to the bulk liquid.
The rate of meniscus displacement due to evaporation is determined from the solution of the
overall problem. When the capillary pressure barrier across a throat adjacent to a CE pore
is exceeeded, the corresponding pore is invaded and becomes a PE pore.
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Consider, now, equation (15) applied to the meniscus on the CE pore throat i. Since
evaporation continues occuring, regardless of whether the meniscus is stationary or moving,
the normal liquid velocity u;, in (15) must be negative. This implies a liquid flow in the
direction from receding to stationary menisci (for example, from the PE pore containing
capillary j to the CE pore containing capillary ¢). It follows that capillary forces in a drying
process will induce a flow, the magnitude of which depends on the drying rates. This is to
be contrasted to the prediction of a stagnant liquid obtained from the linearized stability
analysis above, where capillarity was neglected. This flow is due to the variation of pore
throat curvatures and it is capillary-driven (from “large” to “small” capillaries). In the
particular application involving gas injection to recover oil from fractured rocks, a simplified
process of the same type was termed capillary pumping by Le Romancer et al. [7].

(2) Drying Patterns

The capillarity-induced flow will impart a corresponding viscous pressure gradient, hence

Pl,j > Pz,,' (28)

Then, under the further assumption of a constant pressure in the gas,

Pc,i > Pc,j (29)

namely, as drying continues, the capillary pressure will be positive and may also increase
with time in locations where the meniscus is stationary and pinned (CE pores of type 7). An
analogous statement was also made by Shaw [1], although in his analysis it was attributed to
countercurrent gas-liquid flow. It is possible, therefore, that after sufficient time has elapsed,
the capillary barrier at such a pore throat : will be exceeded for the first time and the
meniscus at that location will also start receding. This mechanism restricts the development
of the front, which cannot be extended too much, or become very tortuous, but will be
limited instead to a finite width. To estimate its extent, we need to analyze the pattern
developed.

Assume for a moment that the drying pattern of the front is of the IP type, as assumed
for example by Prat [14, 15]. Then, all but one of the pore bodies containing the front would
be of the CE type, the only PE pore being that invaded from a pore throat with the least
capillary barrier, among all throats currently containing front menisci. As shown above,
however, there would be liquid flow from the PE pore to a CE pore, which may ultimately
cause one or more pore throats to be invaded, even though their capillary barrier is not
the smallest among the perimeter throats, as originally assumed. Under such conditions,
therefore, the evolution of the IP pattern would be disrupted.

The analysis is facilitated if we make the following assumptions:

1. The pressure drop across two adjacent pore bodies (e.g sites k and m in Figure 6) can
be approximated by a Poiseuille-type law

ka

T(H,k - -Pl,m) (30)

Qk—)m =
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where Qr_sm is the flow rate across the two sites and the conductance Gy, depends only
on the geometry. This is a standard assumption in modeling displacements in porous media
(e.g. see [13, 36, 37, 49, 50]).

2. The pressure in the gas phase is spatially uniform. Given the small value of the gas
viscosity compared to that of the liquid, this assumption is expected to be valid even at
relatively large drying rates.

3. The transport in'the gas phase is by quasi-static diffusion only. Under certain condi-
tions that favor large drying rates (for example, elevated temperatures), convection in the
gas phase can be important. To infer its effect, however, the momentum balance in the
gas phase needs to be considered. An extensive account of the more general problem using
pore-network simulation will be considered in a separate study.

As inferred from the linearized stability analysis above, in the absence of capillarity,
the front would be piston-like, with some local roughness. Capillarity will keep interfaces,
otherwise favored to grow by diffusion, pinned in place, until their capillary pressure barrier
is exceeded. The characteristic length over which percolation rules apply and the pattern is
of the IP type is estimated below.

Consider drying in a pore-network of lateral extent L. We will denote the dimension-
less mean position of the front by X(t) and its width by o(t), or by o;(t), where after
sufficiently large time o:(t) (or o(t)) € X;(t). Here, lengths have been dimensionalized
using the pore length [, subscript ft indicates front tail in 3-D and subscript f indicates
front in 2-D geometries (e.g. see Gouyet et al. [24], for the difference in the two geometries).
Contrary to the case of a 2-D square lattice, to be discussed below, here both phases can be
continuous simultaneously.

If we were to neglect any viscous pressure drop in the liquid phase, the capillary pressure,
hence the percolation probability p, on the front would be spatially constant (the percolation
probability being equal to the percolation-threshold, p = p., where, for 3-D cubic lattices,
pc = 0.25 and for 2-D square lattices, p. = 0.5). Due to the capillary pumping mechanism
described earlier, however, the capillary pressure, hence the percolation probability, will vary
spatially. For a constant gas pressure, the characteristic variation |AP,.| across the front is
related to that of the liquid pressure, namely

|AP:| = |AR)| (31)

Because the flow of the liquid in a pore-network can be described by Poiseuille’s law, and
the displaced phase is continuous, then,

Upio ftl
et (3)
where we introduced the characteristic velocity up and the permeability & (which scales
approximately as [2). The characteristic velocity up is due to diffusion, and to a first ap-
proximation,

|AP| ~

_ DapMyc |9z4| DapMyczae (33)
pi on pilX;
where we estimated concentration gradients in the gas phase by their base-state values.

Substitution into (31) gives the following result for the variation of P, in the front region

up
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Equations (32)-(34) are order of magnitude estimates. Determining the exact pressure and

concentration fields requires the solution of flow and transport problems in a disordered pore
network, which are coupled at the front according to (15), with v, = 0 for all CE pores

and with u, = ;Nfﬂ, for the single PE pore, where the sum is over all Ny CE pores at the
front. The development of such a simulator is currently in progress [51]. Nonetheless, order
of magnitude estimates are useful for obtaining scaling relations.

Consider, now, the variation of the percolation probability in the front region, which will
be affected by the variation of P.. The two are related as follows

205 .
INAR SN (35)

where ¥ is the dimensionless variance of the pore size distribution, a(r), and r,, is a char-
acteristic pore size. In the derivation of (35) we made use of the results P, = £ and
p = [ a(r)dr. Use of (35) in (34) and substituting r,, ~ [ gives the following expression
for the variation of p

(36)
where we introduced a diffusion-based capillary number Cap = QAE-Mf-ZEIEA‘. This capillary
number includes the supersaturation Ce = ¢z 4., which drives the drying process, leading to
the characteristic velocity 2&;@ ~ Qj-f—. A similar diffusion-based capillary number was used
in the related phase change problem involving bubble growth by Li and Yortsos [36, 37], and
Satik and Yortsos [41]. This reflects the fact that drying is internally driven and differentiates
the process from external injection.

The final step for determining os; makes use of a self-consistency argument, similar to
IPG. As the process in the frontal region is in the percolation regime, then p must follow the
percolation scaling [24]

|p - pcl ~ O-;t; (37)
Substitution of (37) in (36) gives the final scaling result
2L X\ T+
o ( C’aD ) (38)

This equation sets the length scale at the front over which the IP pattern is valid. By
definition, this length scale coincides with the front-tail width. The scaling is identical to

that in IPSG, provided that the Bond number is identified as B = 5%‘5}?; According to (38),

the front width increases as the capillary number decreases, as the front position increases
(namely as the drying rates slow down), or as the disorder in the medium increases. Thus,
wider fronts are expected for higher values in the interfacial tension, smaller liquid viscosities
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and larger drying times. Given that the velocity of the front, vy, is inversely proportional to
its mean position (recall the base-state scaling X ~ /%), we further rewrite (38) as

28\
Ofe ™~ ( ) (39)

vfCap

This expression will be used below for a comparison with the experimental data. Finally, it
is worth noting that the exponent found is identical to Lenormand’s [49] for the delineation
of the percolation limit in the drainage of a viscous fluid, even though the two problems are
actually quite different.

We summarize this section as follows: During drying the frontal region consists of a
front of a finite width, o4;. Within the front, the displacement has the fractal properties of
an IP interface. Upstream of the front, however, the displacement is compact. Therefore,
the process can be approximated as IPSG. Xu et al. [34] show how various properties of
the front during displacement processes can be approximated by simple versions of IPSG.
The scaling of the width of the front is given by (38), thus the front width is predicted to
increase with increasing distance from the boundary. As in other problems, where growth
is controlled internally, namely by diffusion within one of the two phases, the appropriate
capillary number is based on the diffusive strength and the supersaturation applied. Typical
values obtained fall within the range of external drainage in porous media.

COMPARISON WITH EXPERIMENTS

To check the validity of the theory we used the experimental results of Shaw [1]. These
experiments were conducted in a Hele-Shaw cell of thickness 15-20 pm, packed with glass
beads of size 0.5 um. We estimate that the cell consisted of 30-40 bead layers, thus pertaining
effectively to a 3-D geometry. The experimental configuration is similar to that studied
theoretically above, with one side of the model open to purge the drying liquid, while all
other sides were impermeable to flow. For these experimental conditions we estimated that
Cap is of the order of 10~8. Figure 9 reprinted from Shaw [1] shows in logarithmic coordinates
the scaling of the front width with the front velocity. The least-squares fit to the data gives
a straight line with slope -0.48 &+ 0.1. Compared to the theoretical equation (39), which also
predicts a straight line with slope -0.47 for 3-D and -0.57 for 2-D, the agreement is, at first
glance, quite good. However, a more careful comparison shows that this cannot be considered
conclusive. Given that the front width in Shaw’s experiments is several times larger than
the spacing of the cell, it is likely that the pattern development is quenched along the third
dimension, and that the experiment is effectively in a 2-D geometry. Under such conditions,
the agreement is not as strong. Furthermore the 3-D scaling was developed for the front tail
width, o, where the pattern is fractal, which may not be the same quantity experimentally
measured. Thus, even under the assumption of a 3-D pattern, theoretical predictions and
experimental results may actually pertain to two different quantities (different definitions
of front width). For these reasons, although compatible with the experiments, the theory
presented cannot be conclusively confirmed from these experiments.

Shaw [1] used Wilkinson’s [28] theory for external drainage to interpret the experimental
results. As discussed in a previous section, this power law has the dependence shown in (4)
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with an exponent that equals -0.38 or -0.25 in 2-D or 3-D, respectively. We believe, however,
that the immiscible, external drainage theory is actually not relevant to the present problem,
which as explained above is driven by diffusion in the gas phase, and where the corresponding
viscous pressure drop is in the displaced wetting phase. By contrast, scaling (4) reflects the
stabilizing effect of viscous forces occuring in the displacing phase (which here is the relatively
non-viscous gas phase, thus leading to an apparent contradiction) (see also Xu et al. [34]).
The inadequacy of equation (4) was recognized by Shaw [1] who subsequently proposed
a different power law similar to (39), without, however, elaborating on the mass transfer
aspects of the problem.

IMPLICATIONS FOR A MACROSCOPIC DESCRIPTION

The previous section described the structure of the frontal region, which because of
its percolation and fractal characteristics requires a local analysis. In the upstream regimes,
however, a macroscopic description is possible. The elements of this description are discussed
below.

Consider, first, the pattern upstream of the front. The discussion will be restricted to
3-D geometries, where flow in this regime is bicontinuous. Immediately adjacent to the
front, there exists a bi-continuous region upstream of the leading edge, where the pattern is
locally IP, except that now the process is above the percolation threshold, as an increasing
number of smaller-size throats have been invaded. Assuming sufficiently small slope in the
liquid saturation profile, volume-averaged quantities can be defined, hence we can postulate
a continuous description in this region. The analogous problem for drainage processes was
studied in Xu et al. [34]. Using transverse averages, the mass balance on the liquid reads as

0 Sl aql z
22 LR 40
Pl [@5 Erars (40)
where the liquid flow rate, g ., is expressed using a generalized Darcy’s law
kk,1(S1) 0P,
;= 7 1
q, L 9z (4 )

involving the relative permeability function k.;(S;). The liquid pressure is related to the
capillary pressure function, P.(5;), via

Pl:Pv_Pc(Sl) (42)

The two functions k,;(S;) and P.(S;) correspond to primary drainage, and they can be com-
puted in a straightforward fashion using IP. The rate of evaporation, R = QA-Q,LM‘LC f Al a—a’”fdA,
expresses the net mass transfer from the liquid to the gas phase, occuring over the gas-liquid
interfacial area 4;,, where V is volume and n is the unit normal to the interface pointing
towards the liquid. In the dilute-limit approximation considered here, this process is linear
with respect to the concentrations, thus we may further take

. DABMAC

R == (2ac — 240)G(5) (43)
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where z 44 is the transverse average of the mole fraction in the gas phase. Because the
pattern of all interfaces is still dictated by IP (although here it is above the percolation
threshold), the effective gas-liquid area and the dimensionless scaling function G(S;) can
be computed by solving a quasistatic diffusion problem around a percolation cluster. The
results of this study will be reported elsewhere. We expect, however, that G has a non-
monotonic dependence, vanishing both near the front (where S5; — 1) and far upstream of
the front (where S; approaches zero).

The system of equation (40)-(43) is completed with a mass balance for the volatile com-
ponent in the gas phase. In the dilute limit, the overall mass balance reads

0S, = 0gy,; _
¢ ot + 0z 0 (44)
while the mass balance for the volatile component becomes
8xAg 89:Ag _ 6 3$Ag R
¢35 ot T 0z 0z DSy 0z + c (45)

where the diffusion coefficient D(S;) is to be computed from a percolation study. The system
of equations (40)-(45) can be solved to determine the saturation profiles in the regime of
bicontinuous phases.

The regime far upstream of the front consists of disconnected ganglia of the liquid phase.
Reasoning as in the scaling analysis for the front, we can conclude that their characteristic
size has the same scaling as given for the front, namely equation (38), where now X; denotes
the average location of these stationary ganglia. The description of this problem can still
be obtained with the above equations (40)-(45), except that the liquid velocity must now be
" set to zero. These problems are currently under study.

CONCLUSIONS

In this paper we used concepts of immiscible displacements in porous media driven by
mass transfer to model certain aspects of drying of porous media. Visualization experiments
of drying in 2-D glass micromodels were conducted to identify mechanisms concerning the
motion of gas-liquid interfaces at the pore-scale. Then, a pore network approach was intro-
duced, utilizing arguments from isothermal drainage, particularly Invasion Percolation in a
Stabilizing Gradient (IPSG), and from the related bubble growth problem.

A specific objective of this work was the analysis of the frontal region separating the initial
liquid from the upstream two-phase region. A linear stability analysis in an effective porous
medium, in the absence of capillarity or microstructure, showed that planar drying fronts
are stable due to diffusion in the gas phase. For a porous medium with a microstructure,
however, capillarity induces a viscous flow, termed in other contexts as “capillary pumping”.
The developing pressure gradients effectively limit the extent of the front, which would
otherwise be of the percolation type, to a finite width. In conjuction with the prediction of
a macroscale stable front, capillarity, diffusion and viscous effects result in a process similar
to Invasion Percolation in a Stabilizing Gradient (IPSG). A power-law scaling relation of
the front width with a diffusion-based capillary number was then developed. This capillary
number reflects the fact that the process is internally driven due to diffusion, as in bubble
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growth problems but in contrast to external drainage. The scaling exponent predicted was
found to be consistent with the experiments of Shaw [1], although a conclusive proof was
not obtained. A continuum description was also developed for the regimes upstream of the
front, the detailed analysis of which will be reported in a separate study.
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APPENDIX

In this Appendix we consider the base-state for the more general problem that includes
unsteady-state diffusion and convection. The condensible component A satisfies the mass
balance

aCA _
B +V-Ny =0 (A-1)

where N4 is its molar flux, expressed for a binary mixture as
Nis=—=cDspVzy+ .’IJA(NA -+ NB) (A-Q)

Here, c4 is the molar concentration, z4 is the molar fraction of A (c4 = cz4), and Np is the
molar flux of the non-condensible species. The latter is also conserved

Jcp
B +V:-Ng=0 (A-3)
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The corresponding boundary conditions read

tg=0 at z=0 (A-4)
and
Pu(T
TA=Thpe = ;( ) at z= F(y,t) (A-5)

at the inlet and the front, respectively. The equilibrium vapor pressure P,4 is a function of
temperature, among other factors.

For a porous medium, the mass-averaged velocity in the gas phase, u, = Miﬁpﬁ%ﬁﬁ,
satisfies Darcy’s law 4

w = —Fvp, (A-6)

Ho
where M denotes molecular weight. Because of the small gas viscosity, however, the gas
pressure can be assumed constant, which for isothermal conditions also implies a constant
molar concentration c. Note also, that from (A-6) and the definition of the mass-averaged

velocity we have the general relation

Vxu, =0 (A-7)

This can be used in the more general case where 2-D concentration and pressure fields
must be evaluated. Concentration and pressure fields are coupled at the interface by mass
balances. For the vaporizing liquid,

jAn = MANAn — PAeVUn = pl(uln - Un) at z= F(y7t) (A_8)

while for the non-condensible component B

JBn = MBNp, — pBevn, =0 at z= F(y,t) (A-9)

where j is the mass flux, v, is the velocity of the receding interface, p; is the mass density
of the liquid and p4. and pp. denote mass density of species A or B in the gas phase at
equilibrium, thus pge = z4.cMy4.

Consider, now, the base state in the absence of perturbations (denoted by superscript
bar). Then, all fluxes are along the z direction only, the front is located at z = f(¢) and the
base state is described as follows. The base-state liquid pressure corresponds to a stagnant
liquid

P=P, for f(t)<z<L - (A-10)
the base-state fluxes are
V. o PL Vo, — PBe .
Ny, = Msz and Np, Msz (A-11)

where we implied p4e < pi, while the mole fraction is given from
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_ dz < o
NAz = —CY)ABY:Z;i + iA(NAz + NBZ) (A_12)

To solve the unsteady-state problem we take the ansatz that the front position is proportional
to the square root of time,

f(t) = 2\\/D4pt (A-13)

where A is a dimensionless parameter to be determined. Noting that for constant ¢, the total
molar flux is constant

; PBe 1
.+ Np, = - — -14
Na. + N, =pif I:PZMB MA] (A-14)
the mass balance for species A, equation (A-1) reads
a:l:A o PBe 1 832,4 3211),4
¢ ot +plf [pIMB B MA 0z - CDABF,;_ (A-15)

where we made use of (A-11), dot denotes derivative with respect to time and we evaluated
v, at z = f(t). We will seek the solution of this problem using the similarity variable
1M = 574—=- Then, equation (A-15) becomes

" +22'(n—¢)=0 (A-16)
where primes denote derivative with respect to 7 and we defined
p1 PBe 1
= A= - — A-17
PN [PIMB MA] (A-17)

This equation is to be solved subject to the boundary conditions

Tp=Tg. at =N (A-18)

and

z4=0 at =0 (A-19)

Note that because the integration interval here is 0 < z < f(¢) and f(0) = 0, there is no
need to satisfy an initial condition, in contrast to the problems considered by Bird et al. [52]
and Cussler [53]. The latter authors solved a similar problem, except that they made the
assumptions of a fixed interface [52] or of a vanishing flux for species B [53].

The solution of (A-16)-(A-19) is

erf(n — ¢) + erf
‘erf(A — ¢) + erfé
The unknown parameter A is obtained by substitution of this solution in the first equation
of (A-11). After some manipulations, we find that A solves the transcendental equation

T4 =TA

(A-20)
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M pBe _ czacMpexp(—(2 ~ ¢)%)
Aren (e )| = e (A-21)

In (A-21), it must be recalled that ¢ is proportional to A (see equation (A-17). Equation
(A-21) shows that the front grows proportionally to the square root of time, as expected.
Of interest is the dilute limit |z 4, (—%—g% - 1) | < 1, considered in the main text, in which
case A < 1 and (A-21) gives

A2 = % (A-22)
which when inserted in (A-13) gives
fe 2CDABp]lWAer . (A-23)

which is the equation in the text. In this limit, the convective term vanishes and the con-
centration field is quasistatic (namely it satisfies a Laplace equation, the base-state profile
for the mole fraction being linear).
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Figure 1: Schematic of liquid-gas interfaces during drying in porous media.
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Figure 2: Schematic description of drying regimes in porous media, obtained from 2-D pore
network simulations. Dots and white areas denote liquid-occupied regions, dark shaded areas
denote gas-occupied regions. (Due the 2-D topological limitations a schematic of the 2-Phase
biconntinua regime is not feasible).
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Figure 3: a. Self-affine front during extairnal drainage indicating an Invasion Percolation in
a Stabilizing Gradient (IPSG) process. b. Single finger in extairnal drainage indicating an
Invasion Percolation in a Destabilizing Gradient (IPDG) process.
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Figure 4: Schematic of the experimental apparatus.
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Figure 5: Two different snapshots (5a and 5b) of the interfacial patterns at two different
times from the micromodel experiments. (system: air/n-hexane).
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Figure 6: Close-up of the gas-liquid interface during drying in the micromodel experiments.
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Figure 7: A schematic of the planar drying front geometries for the stability analysis of drying
in an effective porous medium. Near the indicated protuberance, concentration contours in
the gas phase are compressed leading to enhanced mass transfer, hence to stabilization of
the protuberance.
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Figure 8: Experimental visualization of two different types of pores during drying: a) Com-
pletly Empty (CE) pores, b) Partly Empty (PE) pores.
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Figure 9: Variation of the width of the drying front with its average velocity. A least-squares
fit to the data gives an exponent of -0.48 + 0.1.
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4. PHASE DIAGRAM OF FULLY DEVELOPED DRAINAGE: A STUDY OF
THE VALIDITY OF THE BUCKLEY-LEVERETT EQUATION

Y.C. Yortsos and B. Xu
(and with the collaboration of D. Salin)

ABSTRACT

Despite the significant progress made in recent years, a fundamental understanding of
immiscible displacements at the macroscale is lacking. In this paper we use a version of
percolation theory, based on Invasion Percolation in a Gradient, to connect drainage pro-
cesses af the pore-network scale with the displacement at the macroscale. When the mobility
ratio M is sufficiently small, the displacement is stabilized and can be described by Invasion
Percolation in a Stabilizing Gradient. In the opposite case, the displacement has common
features with Invasion Percolation in a Destabilizing Gradient. A phase diagram of fully
developed drainage is then developed. The transition between stabilized displacement and
fingering is controlled by the change of the sign of the gradient of the percolation probability,
and the transition boundary is described by a scaling law involving the capillary number and
the viscosity ratio. The theory is subsequently extended to correlated pore networks and a
phase diagram involving the correlation length X is constructed. As the regimes of stabilized
displacement are also those for which conventional theories (such as the Buckley-Leverett
equation) apply, the phase diagram helps to delineate their validity.

INTRODUCTION

The mathematical description of immiscible displacements in porous media is based on a
classical methodology developed several decades ago (for example, see Collins, 1961). This is
founded on two postulates: that capillary equilibrium betwen the fluids exists to relate their
pressure difference to saturation-dependent capillary pressure functions, and that saturation-
dependent relative permeabilities can be defined, which allow extending Darcy’s law to multi-
phase flow (e.g. see Dullien, 1992). The resulting non-linear differential equations have been
the subject of extensive discussion and analysis. For one-dimensional flows, in particular, this
formulation reduces to the celebrated Buckley-Leverett equation in petroleum engineering,
or to the Richards equation in hydrology, respectively. These two equations have been the
fundamental building blocks for many developments in the respective fields (e.g. see Bear,
1972, Marle, 1981, Lake, 1989).

A rigorous derivation of this formalism has been attempted by essentially two approaches:
Volume-averaging or homogenization, which in principle incorporate pore-scale processes
(Whitaker, 1986, Auriault et al., 1989), and pore-network models, where single-pore varia-
tion is neglected in favor of a variation at the pore-network scale (see Dullien, 1992). How-
ever, neither of these approaches have been shown to be capable, so far, to rigorously lead
to the conventional, and widely used, formalism. Homogenization can be usefully applied
when the various length scales of the problem are separated. In the context of immiscible
displacement, this means that saturation profiles must be sufficiently smooth, a requirement
that is equivalent to capillary equilibrium over a sufficiently large length scale. This imposes
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a restriction on the magnitude of the capillary number, expressing the relative ratio of vis-
cous to capillary forces. Moreover, the distribution of phases under these conditions must
be obtained by methods other than homogenization (for example, one based on Invasion
Percolation, see below).

Pore-network models represent a useful alternative to homogenization. However, their

main success, so far, has been in providing the distribution of immiscible phases over the pore-
-network in the absence of viscous forces, namely under conditions of capillary control (e.g.
Heiba et al., 1982). In this case, the problem reduces to a generic statistical physics problem,
that of percolation. From detailed studies of the various models of Ordinary Percolation
(OP) and, particularly, Invasion Percolation (IP), the effect of various parameters, such
as the pore size distribution, the network topology, the correlation structure, etc., on flow
properties, such as the conductivity (or relative permeability) of a phase, can be obtained
(for example, see Heiba et al., 1982, Wilkinson, 1984 and 1986, among other studies). In
the presence of viscous forces, where saturation profiles are no longer stationary and involve
gradients, simple percolation models are not applicable. A number of pore network models
that simulate displacements involving both viscous and capillary forces, have been developed
(Lenormand et al., 1988, Blunt and King, 1991, Chaouche et al., 1993). In fact, there are
increasing efforts to use pore-network models for the ab initio description of immisicible
displacements in real porous media, at least at the laboratory scale (see, for example, recent
works by Xu et al., 1997, and Oren et al., 1997). However, a connection of these results to
the conventional formalism has yet to be established.

We note in passing that similar considerations also apply to the process of scaling up
from the macroscopic (differential) scale to a larger (for example, the megascopic or the.
coarse-grid) scale. Homogenization again presupposes a condition of relatively flat saturation
profiles. which can only be attained under conditions of capillary equilibrium. To describe
the distribution of phases under such conditions, large-scale versions of percolation theory
can be developed, paralleling pore-network models, in which the numerical lattice is mapped
into an equivalent pore-network (see Yortsos et al., 1993). Based on this approach, large-
scale properties, such as relative permeabilities can be obtained in terms of the permeability
distribution. When viscous forces cannot be neglected, however, (and this is increasingly
more likely as the scales of interest increase) this approach does not strictly apply. The
question of the validity of the traditional description must then be addressed.

The objective of this paper is to describe a methodology for delineating the conditions
under which the conventional approach is valid. The methodology is based on a discrete,
pore-network decsription and relies on a key premise: that for the conventional continuum
model involving differential equations (namely, the Buckley-Leverett model) to be valid, the
displacement at the pore-network scale must not be viscous fingering. In our approach,
therefore, the distinguishing characteristic of the validity of the conventional model is not
that viscous forces are not significant, but rather that they do not lead to viscous fingering at
the small scale. Thus, the constraint to be obtained involves not only the capillary number,
but the viscosity ratio as well. In some sense, our approach is a form of stability analysis
of immiscible displacement at the pore-network scale. Indeed, our results will be compared
with conventional stability analyses. The key to the present approach is the recognition that
viscous forces lead to a gradient in capillary pressure, which will in turn impart a gradient in
the percolation probability, to be defined shortly below. The conventional approach will be
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valid, as long as this gradient is negative, in which case it leads to a stabilized displacement
at the pore-network scale, as explained in more detail below.

Delineating the conditions for the validity of the Buckley-Leverett model is essentially
equivalent to developing a phase diagram of the process in a parameter space involving the
capillary number, the mobility ratio and the correlation length. Because it pertains to a fully-
developed displacement, however, this phase diagram is different from Lenormand’s (1989),
who focused on the classification of displacements in square L X L networks. Lenormand
identified three different regimes (see Figure 1), namely Invasion Percolation (IP), Piston-
Like Displacement (PL) and Viscous Fingering (VF), which were separated by boundaries
that depend on the size L of the network. As the displacement proceeds (namely as L
increases), the process is likely to fall in-between these regimes. Our approach, on the
other hand, pertains to fully-developed displacement, the boundaries between the regimes
to be obtained not involving a length scale, other than the correlation length (in the case of
correlated heterogeneity). In some sense, the phase diagram to be obtained characterizes the
full transition between IP and PL and IP and VF, respectively, in Lenormand’s diagram, as
depicted in the arrows A — B and C' — D in Figure 1.

This study will be restricted to primary drainage processes. Extension to imibibition
should be possible, following a similar method, but will not be attempted here due to the
qualitatively different mechanisms that are possible in the latter (Lenormand, 1990, Blunt,
1997). We will describe the phase diagram in the presence of capillary, viscous and gravity
forces for the two cases of uncorrelated and correlated heterogeneity, respectively. This
paper, therefore, complements related work in the area published in Yortsos et al. (1997)
and Xu et al. (1998), where the elements of this approach were first presented.

The paper is organized as follows: Because of its close relation to the process of Invasion
Percolation in a Gradient (IPG), aspects of the latter will be first reviewed briefly. Subse-
quently, we will present the basic aspects of our approach for an uncorrelated pore network.
This part parallels the report of Yortsos et al. (1997). Capillary, viscous and gravity forces
will be considered. The effect of gravity is new and is discussed in a separate section. We
must note, though, that we will not consider in this study the possibility of gravity override
or gravity underrun, and we will restrict the analysis to gravity acting in the direction of
displacement only. The case of gravity override requires a more extensive analysis and will
be presented elsewhere. The last section presents displacements in a field with correlated
heterogeneity, which also constitutes the main contribution of this paper.

BRIEF REVIEW OF IPG

Invasion Percolation in a Gradient (IPG) is IP in a field where the percolation proba-
bility p has a spatial gradient (e.g. Gouyet et al., 1988), typically due to a hydrostatic or
permeability field, namely

dap
where z is dimensionless distance and B is the Bond number. The latter is related to
hydrostatic or permeability gradients through expressions of the type B = Apg,r? /v (Hulin
et al., 1988), where Ap is the density difference, g. is the acceleration of gravity in the
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direction of displacement, r, is the mean pore size and 7 is the interfacial tension, or
B = —dvk/dz (Chaouche et al., 1994), where k is the permeability, in the respective cases.
If B > 0, then p decreases in the direction of displacement, and the latter involves an IP
frontal region of finite extent, o, scaling as (Wilkinson, 1984, Gouyet et al., 1988)

o~ BT (2)

The fractal front is followed by a compact region, the transversely-averaged properties of
which were elucidated in Gouyet et al. (1988). We will denote this process as Invasion
Percolation in a Stabilizing Gradient (IPSG). In the opposite case (B < 0, p increasing
in the direction of displacement), the process is destabilizing and proceeds in the form of
capillary fingers, the scaling of the average thickness of which with |B| also satisfies (2),
namely

o ~ |BI7H (3)

(see Frette et al., 1992, Meakin et al., 1992). We will denote this process as IPDG. It has
been used to infer the properties of gas migrating upwards in a liquid-filled porous medium.

Consider now drainage in a random porous medium. In the absence of viscous forces,
the displacement pattern will be IP, where the front advances by penetrating the largest size
throat available, and the capillary pressure P, = P,,, — P,, is spatially uniform (Chandler et
al., 1982). In the presence of viscous forces, however, a gradient (negative or positive) will
develop in P,. In view of the relations

P.= 277 and p= /oo a(r)dr (4)
where r is the pore size invaded and «(r) is the pore size distribution, this, in turn, will
impart a gradient in the percolation probability, p. Thus, in the presence of viscous forces,
the process will be also characterized by a gradient, and we expect that it will contain
features of one of the two versions of IPG described above.

The displacement pattern, being initially of the IP type, will subsequently evolve along
one of the two directions shown in Figure 1. Thus, fully developed drainage will be char-
acterized by one of two possible global regimes: A Stabilized Displacement (SD), namely
one involving the two local regimes of IP and PL, as indicated along the arrow A — B in
Figure 1, and a Capillary Viscous Fingering (CVF) regime, namely one involving the local
regimes of IP and VF, as indicated along the arrow C — D in Figure 1. A schematic of the
expected patterns is given in Figure 2, obtained from pore-network simulations. Some of the
properties of these regimes were analyzed in Xu et al. (1998). Here, we propose that the
various properties of SD and CVF, the delineation of their validity, the stability of SD and
the validity of the continuum approach can be inferred by the two versions of IPG referred
to above, and by determining the spatial variation of p and the sign of its gradient.

UNCORRELATED HETEROGENEITY

Consider drainage at constant volumetric flow rate @, in a random porous medium rep-
resented as a network of pores (e.g. L X N in 2-D or L x L X N in 3-D, where N is variable).
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A non-wetting fluid of viscosity pn. is displacing a wetting fluid of viscosity u,. Assume
constant lattice spacing /, and a pore throat size distribution a(r), with mean r,, and stan-
dard deviation ¥r,,. To illustrate the proposed method, we first consider the problem in the
absence of gravity.

a. Absence of Gravity

In the absence of gravity, the properties of the two regimes, SD and CVF, were discussed
in Xu et al. (1998). The SD regime is characterized by a transition from an IP pattern at
the front to a more compact pattern upstream of the front. The front moves at a constant
velocity v, followed by a saturation profile in the form of a spreading wave, as dictated by
the classical Buckley-Leverett solution. For an SD (Figure 2a) the front has a pattern of
the IP type, of width o and lateral extent L}, where d is the embedding dimension. The
frontal region is centered around the mean front position, X,(t), which travels with velocity
v, and, in analogy with IPG, is defined as the place where the transverse average of p is
equal to the percolation threshold, p(X.) = p.. It was shown in Xu et al. (1998) that use of
IPSG results into the following equation for the determination of the front width

2 1

~ Mo ) ~ Fot (5)
where M is the viscosity ratio, M = L—"’w, Cap = ”“% is the capillary number at the front and
b is a dimensionless constant. Exponents v,  and D correspond to the correlation length, the
conductance and the mass fractal dimension of the percolation cluster, respectively (Stauffer
and Aharony, 1992). Upstream of the front there is a compact region (Figure 2a), the
transition to which can be described by a cross-over function. This function can be used to
describe the saturation profile within and upstream of the front, using concepts from IPG
(see Xu et al., 1998).

Equation (5) is obtained by applying the self-consistency argument of Gradient Percola-
tion (Gouyet et al., 1988), which states that since o delineates the extent of the IP cluster,
we must also have the condition

¢+v{D—-1)
<bo v

Ap~ov (6)

where Ap (= —o22) is the variation of p in that region, namely

Ap ~ Car (ba_u»u(o-l)

9% oM ”) Q

In turn, Eq. (7) is obtained by using the relation between P, and p, refered to in (4), and
the following expression for the change in capillary pressure,

AP, ~ g (ba*‘i”%’ﬁl - M) (8)

obtained by estimating the pressure drops in this region (Xu et al., 1988). Essentially, the
term in the brackets of (5) or (7) expresses the difference between the pressure drops in
the nw and w phases. The power-law reflects the progressively increasing resistance to flow
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of the nw phase, which occupies part of a percolation cluster, as its size increases. The
non-linearity must be noted.

Now, it is easily shown that (5) admits a unique positive solution for all values of M and
Cap. In particular, at small Cap, this solution approaches the power-law asymptote

Cap\ ™ TFF (0=
7 < 5 ) ()

which is independent of M. Comparing (9) to (refipveqla), one can identify a suitable Bond
number, Bsp, for this problem

C 1+C+1;1D—1!

aF v+l

B ~

D ( 2% > (10)

Thus, in this case, the Bond number increases with an increase in the capillary number. It
is also interesting to note that an increase in the disorder of the pore structure (increas-
ing ¥) has an effect which is equivalent to stronger capillarity (smaller capillary number).
This explicit representation of the disorder of the pore network in the description of the
displacement is an interesting result.

The fact that a solution for (5) exists for all M and Car also means that a fully developed
SD exists (but will not necessarily be reached) for all M and Car. The inference that a
SD exits arises from noting that because of the existence of a solution, the LHS of (5) is
positive, hence p decreases in the direction of displacement. To establish whether this regime
will actually develop, however, we must examine the initial phase of the displacement, before
a travelling-wave solution develops.

Before we proceed with this analysis, we also briefly mention the CVF regime (Figure 2b).
In the context of IPG, this will develop when p increases in the direction of displacement,
in which case the Bond number is negative and the process will be IPDG. In analogy with
(3) we expect that in such a displacement the fingers will be influenced by both viscous and
capillary effects. This is in contrast to the standard DLA approach, in which the finger width
is equal to the resolution of the discretization. Xu et al. (1998) showed that under certain
conditions, this problem becomes a standard IPDG problem with a suitbale Bond number

CaM
Bovr ~ ——5 (11)
through which the average finger width can be directly obtained by using (3), namely
CaM\ ™51
~ 2
7 ( 2% ) 12)

We note that this power law has an exponent identical to Lenormand’s (1989) for the scaling
of the IP-VF boundary in his phase diagram. However, Lenormand’s study did not pertain
to the width of a finger, or for that matter to the particular CVF regime of destabilizing
IPG discussed here. This result also shows that under the asumption made, the finger width
will decrease with an increase in C'a and M, eventually reducing to a thin finger of the size
of a single pore (and where a DLA regime will emerge). Further study of the CVF regime is
currently in progress.
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Phase diagram

Consider, now, the delineation of the validity of these regimes, in which case as explained
above one needs to address the initial phase of the displacement. During this initial period,
the displacement has an extent x(¢) x L¢~!, where x is increasing with time. Its pattern
will be of the IP type as long as x(t) < x.(Ca, M), where x(Ca, M) is to be determined.
When the pattern first departs from percolation (at x = x.), the transition towards a
fully developed displacement starts. The latter will either become a SD (with a compact
region following an IP front) or a CVF regime, depending on whether at x., p decreases
or increases in the direction of displacement, respectively. To trace this transition we need,
first, to identify x. and, second, to determine the sign of the gradient of p at that point.

The analysis is similar to the SD case presented previously. The pressure drops are
expressed similarly, but now with x in place of ¢ and by taking Qn. = @ (there are no
travelling fronts). Note also that here the entire cluster is a self-similar fractal. As previously,
the most important quantities are AP, and Ap across a region of extent x, which here read
in absolute value as follows

295 w | Guoon
AP ~ 2 |Ap] ~ TE22 o S iy (13)
Tm Tm
where c is another constant. To define x. we follow Lenormand (1989) and request that at x.,
we must have |A1$V | = ¢ K 1, where IV, is the fraction of sites of the nw phase occupying an IP

cluster. The sca,l}l,ng of the latter can be obtained from a standard application of percolation
theory, i.e. N, ~ (const)(p — p.)? (see also Stauffer and Aharony, 1992). Proceeding as in
Lenormand (1989), substituting |Ap| = |p — p| from (13), and taking x = x., then gives the
following equation for x.

C 14v ¢Huv(D—2)
EaXe" exe © —M|~e (14)

This is a key nonlinear equation from the analysis of which we will delineate the various
regimes. Its solution is discussed below. This equation represents a generalization of two
equations in Lenormand (1989) describing the IP-to-PL and IP-to-VF boundaries, respec-
tively (which were determined in Lenormand, 1989, in what amounts to a x. X x. lattice

under the assumption that the pressure drop occurs only in one phase).
§+u!D-—-2!

Before we analyze (14), we note that ¢xe *“  actually represents the large-y asymptote

of the ratio MAA}%”"—’-. Indeed, equation (14) can be rephrased as
CaM 1
EAP,,,XC |APny, — AP, | ~ ¢ (15)

When the lattice has a finite size and x. is small, the ratio of the pressure drops is not a power-
law, and a more general expression, obtained numerically, must be used. Using 3-D pore
network simulations, Yortsos et al. (1997) computed the ratio of the two flow conductances
GQ“— for unit viscosity ratio, which is equivalent to Mf]f""’ in the present problem. Typical
results obtained are shown in schematic of Figure 3. We note that at relatively large x,
the function has the expected power-law scaling, although it eventually reaches a plateau,
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reflecting finite-size effects. On the other hand, at sufficiently small x, the curve approaches

a constant value M*, which was found to be realization-dependent.
£+u!D—2!
The solution of (14) (ro more generally of (15)) depends on the sign of cxe * —M (or

more generally of the difference AP,,, — AP,). It is apparent from Figure 3 that we must
distinguish two different cases:

(a) If M < M* (region A in Figure 3), the term between the brackets in (14) (or (15))
is positive, and the resulting equation is very similar to (5) describing the extent of the
stabilized zone in SD. As in that case, it admits a solution for all values of Ca, with the
same dependence on parameters as ¢. Moreover, and for the same reasons as in SD, p
will be decreasing with distance for all x(¢) < x., the problem becoming an IPSG process.
This means that when x. is reached, the regime that will set in will be an SD. Thus, when
M < M™ the displacement is an unconditionally stabilized displacement. This conclusion
is similar to that of conventional stability analyses (where M* = 1 in Chuoke et al., 1959,
and M~ > 1 and also dependent on other petrophysical properties in Yortsos and Hickernell,
1989), but is reached here using IPG.

(b) If M > M™, the solution x. can lie either in region B, or in region B, (Figure 3). If in
region By, the term in the brackets of (14) (or (15)) is negative, which means that p increases

$+v(D=2)

with distance (note that Ap has the samesignascxe * — M). In this case, therefore, the
pattern when x. is reached will depart from percolation toward the CVF regime. Assuming
for simlicity equation (14) from now on, x. solves

14w C+u (D=2 E
(o™ - 1)
a

—xe¥ (exe * NC—e (16)

However, and contrary to the case (a), a solution of (16) does not exist for all M or Ca.
Indeed, the LHS of this equation goes through a maximum as a function of x, which, sub-
stituted back in (16) gives the following condition for a solution to exist

{14 (D—1

LMEDD > Oe) (17)

where we grouped all constants into an O(1) parameter in the RHS. This inequality expresses
the condition for the existence of the CVF regime. It shows that for M above M*, the
displacement will become CVF provided that Ca or M are sufficiently large. Otherwise, the
pattern will remain at percolation as the displacement proceeds throughout region By (since
a solution to (16) will not exist), as well as after By is exited (at xo, Figure 3) and region B,
is entered. In the latter region, the term within the brackets in (14) is positive, the resulting
equation having a solution for all values of M or Ca. Reasoning as in case (a), we conclude
that if (17) is violated, the transition will be toward a SD.

We summarize the above as follows: A stabilized displacement (and a conventional de-
scription) is possible either if M < M* for all Ca, or if M > M* but for sufficiently small
Ca, as dictated by (17). Otherwise, the displacement wil be destabilized. These results can
be portrayed in a phase diagram of fully developed drainage as shown in Figure 4. The two
regimes SD and CF are separated by a line, which at large M is asymptotically straight with
slope E2E4UP-1) " ond as M approaches M™ becomes asymptotically vertical. At large Ca,

¢+v(D-2) ?
the boundary delineating SD from CVF is a vertical line independent of Ca. In the absence
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of disorder, etc., we can take M™* = 1. However, in a real porous medium, the effective mobil-
ity ratio st the transition would also depend on the relative permeability characteristics, the
trapped saturations, etc., as can be shown by a traditional stability analysis (Chikhliwala et
al., 1988). It must also be noted that in actuality, condition (17) needs to be modified near
M*, where x. is relatively small and the various power-law scalings of percolation do not
apply, as pointed out above. Near M*, we expect condition (17) to involve M — M* and a
different dependence.

The boundary separating the two global regimes also serves to delineate the validity of
the conventional continuum description, which only applies to a SD displacement. Hence,
the phase diagram of Figure 4 shows the region of applicability of the conventional approach
using conventional relative permeabilities and capillary pressures based on percolation theory.
The resolution of this important issue has been long-standing.

Before closing we note that continuum predictions to the continuum breakdown can be
obtained using the linear stability analysis of SD. In the two different approaches to this
problem referred to above, the fastest growing finger was found to have the two different

scalings
k vk
ez ~\[ = 1)Ca & ™=~ G = 1)Ca (18)

by Chuoke et al. (1959) or Yortsos and Hickernell (1989), respectively. By requesting that
this thickness is comparable to the pore size (which scales as ~ vk, where k is permeability,
e.g. see Katz and Thompson, 1986), the continuum breakdown is predicted to occur when

Ca(M* 1) ~ O(1) (19)

This equation is the continuum counterpart of (17). At large M, both expressions are power
laws but with very different exponents (1 for the continuum and 2.78 or 2.20 for the IPG
approach, in 2-D or 3-D, respectively).

b. Presence of Gravity

Consider, now, the extension of the problem in the presence of gravity (but in the absence
of gravity override). The equations for the pressure drop across any region must be modified
to include the effect of gravity. For example, the equation for the pressure drop of the wetting
phase over a distance of length [ should read

AP, = ”w]iq” — 0ulogs (20)

and likewise for AP,,,. Proceeding as before it is readily shown that the equation analogous
to (14) is

Ca 1tz ¢+v(D=2) )
E‘Xeu CXe v - (M - Ng) ~ € (21)

where we have defined the gravity number
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N, = (Pw = Pruw)gsk
dlnw
Equation (21) shows that the effect of gravity is stabilizing if N, > 0, and destabilizing
if N, < 0. Indeed, comparing (21) with (14) shows that we have effectively replaced M
in equation (14) by M — N,. Proceeding exactly as above, we then reach the following
conclusions:
1. If M — N, < M*, the process is unconditionally a stabilized displacement (SD). In
particular, by taking M™* = 1, the condition can be rearranged to read

(22)

Hw = Pnw < (pw p‘nw)gxk (23)
QHnw
We recognize this as the condition for the long-wave stability of a flat interface in miscible
displacement in the absence of dispersion (eg. Hill, 1952). A more complicated expression
would result in the immiscible case, where is not necessary that M™ = 1.
2. If, on the other hand, M — N, > M™, the process will become a CVF regime influenced

by gravity, provided that the following condition applies

% - Ny BB > 09 (24)

This equation is the generalization of the previous result (17) that includes gravity in the
direction of displacement. We conclude that the effect of gravity in this analysis enters
through the combination M — N,, which effectively replaces .M. Hence, the same phase
diagram as Figure 4 would also be applicable here, as well, provided that the appropriate
substitutions are made. We must also point out that near the vertical boundary, equation
(24) is not applicable, and as in the previous, it must be replaced by a different expression
in which the combination M — M* — N, must be used. This will not be further considered
here, however.

CORRELATED HETEROGENEITY

When the pore network is correlated with (dimensionless) correlation length, A, the
previous approach is not necessarily valid, due to the different scaling of the pressure drop in
the displacing phase with distance x, depending on whether x > A or x < A, respectively.
In the first case, where the correlation length is small, we expect results identical to the
previous, provided that

Xe 2> A (25)

In the second case, the problem is essentially the same with that of displacement in a long-
range correlated lattice (for example, of the fBm type). Invasion percolation (IP) in such a
lattice was studied by Isichenko (1992) and more recently by Du et al. (1996), and was shown
to take the form of compact rather than fractal patterns. In addition, Invasion Percolation
in a Gradient (IPG) in an {Bm lattice was investigated by Du (1996), who showed that in
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the case of an IPSG process, the usual GP scaling (2) applies, except that now the scaling
exponent reduces to a classical value, namely that

o~ B! (26)

This result is consistent with the theoretical argument that in an fBm lattice, v =
(Isichenko, 1992).

Consider, now, drainage in a correlated field. In the presence of viscous forces, we expect
that the postulated previous analogy to IPG would still be valid, with the exception that
because of the channel-like aspects of this correlated displacement, the pressure drop will
not have the power-law scaling of the fractal patterns of the uncorrelated case. Furthermore,
two new patterns should arise, one corresponding to SD, to be denoted as HS (Heterogeneity
Stable), and another corresponding to CVF, to be denoted as HUS (Heterogeneity UnSta-
ble), both of which will occur in a long-range correlated field. Two characteristic patterns
are shown in Figure 5. The HS pattern shows channeling behavior, with a compact structure
where channeling occurs, while the HUS pattern is much more fingered. The specific prop-
erties of these patterns are not fully known and they are currently under study. However,
we may still delineate their validity by proceeding as before. In the following, we will first
delineate the validity of the previous SD and CVF patterns, and subsequently describe the
boundaries of the two new patterns.

For the SD pattern to be valid, condition (25) must apply. Consider, first, the case
M < M~. The solution of equation (14) can be greatly simplified if we neglect the effect of
M. This can be done without loss to a first approximation. Inserting the resultin solution
in (23) gives the following condition

€x o
Ta > O(X%) (27)

for the validity of the SD pattern, where we have defined for simplicity the exponent a =
5—'”*—‘;”')'-'—). This condition delineates the validity of the SD regime for M < M™ in the
general case of correlated networks. This condition is represented by a straight line paralllel
to the logM axis in the modified phase diagram shown in Figure 6. We note that as A
increases. the region of validity of the SD regime decreases and becomes restricted to smaller
values of Ca. This is consistent with what is expected intuitively. To delineate the boundary
of the SD regime on the other side of M™, we consider the asymptotic solution of (14) at

large .M. Inserted in (14), this gives the following condition

M > )P ~(28)

where we defined the exponent 8 = ¥tL. This condition states that M should be sufficiently
large. However, since this has already been assumed in the analysis, we will assume that
(28) is implicitly satisfied by the assumption made and we will place our emphasis on the
validity of the CVF regime, instead.

For the CVF pattern to be reached, a similar analysis applies. Here, we will restrict the
analysis to the large M limit, in which the solution of (16) simplifies considerably. Inserting
the results to (25), leads to the following condition for the validity of the CVF regime at
large M
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The resulting boundary in the logCa-logM diagram of Figure 6 is a straight line with slope
-1. Given that this slope is less than the slope of the boundary separating the CD and CVF
regimes, we reach the conclusion that the CVF regime will always exist, for sufficiently large
M. However, the region of its applicability diminishes as the correlation length, A, increases.
This is indicated in Figure 6. We caution again that condition (29) applies only for relatively
large values of M. For values in the intermediate range, an explicit condition is not readily
available, as the two exponents o and [ are not integers and require a numerical solution.
Furthermore, for sufficiently small M, the power-law scaling of the conductance ratio is no
longer valid (compare with Figure 3) and the boundary deviates from the straight line with
slope -1. We expect that the delineating boundary will converge with that of the boundary
delineating the SD-CVF transition, as depicted qualitatively in Figure 6. A more detailed
analysis of these boundaries is needed at finite values of M.

The boundaries calculated above delineate the validity of the SD and CVF regimes.
Following a transition region, the two regimes of HS and HUS eventually emerge. To describe
the regions of their applicability we consider the equivalent to (14) expression when x < .
As discussed above, in this case the scaling of the pressure drops will be linear for both
phases, thus we can write the equivalent to (14) expression

Ca
T
where we introduced the O(1) constant d. The two different limiting regimes HS and HUS
will correspond to the two cases d — M > 0 and d — M < 0, respectively. Note that d may

be realization-dependent. Now, the validity of either of these regimes requires the necessary
condition

> 0(3)) (29)

Xeld — M| ~ € (30)

Xe K A (31)

Hence, the validity of the HS regime requires the necessary conditions

Ca> and d>M (32)

2e
Ald— M)
depicted in Figure 6 for the case d = M*. We note that at small M, the delineating boundary
approaches a constant of order % Inversely, the validity of the HUS regime requires the

conditions

Ca> and M >d (33)

Ye
MM —d)
also depicted in Figure 6 for the case d = M*. We note that at large values of M, the

boundary becomes in the log-log plot of the phase diagram a straight line with slope -1,
namely it becomes parallel to the boundary delineating the validity of the CVF regime.
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CONCLUDING REMARKS

In this paper we used Invasion Percolation in a Gradient, to connect drainage processes
at the pore-network scale with the displacement at the macroscale. A phase diagram in-
volving the capillary number, the mobility ratio and the correlation length was constructed
to delineate the regions of validity of various regimes. The transition between stabilized
displacements and viscous-driven fingering is controlled by the change of the sign of the
gradient of the percolation probability. Transition boundaries were described by scaling laws
involving the capillary number, the viscosity ratio and the correlation length. Essentially,
the approach presented represents a stability analysis at the pore-network scale. When the
mobility ratio M is sufficiently small, the displacement is stabilized and can be described
by Invasion Percolation in a Stabilizing Gradient, involving two regimes, denoted as SD
and HS, depending on whether the displacement is controlled by randomness or correlation,
respectively. In the opposite case, the displacement has common features with Invasion Per-
colation in a Destabilizing Gradient and involves the regimes of CVF and HUS in the cases
of correlated and uncorrelated heterogeneity, respectively. The asymptotic properties of the
boundaries delineating these regimes were identified.

The limiting regimes identified under the conditions of IPSG, namely SD and HS, are
also the regimes where conventional theories (such as the Buckley-Leverett equation) apply.
By comparing Figures 4 and 6, it is apparent that the boundary separating SD from CVF
in Figure 4, is essentially the boundary that delineates the applicability of the conventional
(Buckley-Leverett) description. In these regimes, saturation-dependent relative permeabil-
ities can be defined, subject to the additional two points: 1. Although the HS regime is
subject to a conventional Buckley-Leverett analysis, the relative permeabilities and capillary
pressure functions to be used there should be stochastic functions, since the distribution of
phases will also depend on the particular realization of the heterogeneity field (for example,
see Du et al., 1996, and Paterson et al., 1997). 2. The relative permeabilities in the SD
regime may additionally depend on the capillary number of the displacement through the
dependence of the trapped saturation of the displaced phase on Ca. Indeed, when the dis-
placement process is IPSG, the trapped saturation will decrease as the Bond number of the
displacement increases. Given that in the SD case, the Bond number can be identified as
being proportional to the capillary number to a power (compare with (10)), it is apparent
that an increase in Ca will lead to an increase in Bgsp, hence to a decrease in the trapped
saturation. The precise dependence, however, needs to be evaluated numerically. Additional
work is also needed in the study of the properties of the limiting heterogeneity regimes as
well as the properties of the delineating boundaries at values of M near the critical.
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Ca

Figure 1: Phase diagram for drainage (adopted from Lenormand, 1989). Arrows indicate
the transition from percolation- to viscous- dominated regimes, expected in fully-developed
displacements.
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Figure 2: Schematics of fully-developed drainage: (a) Stabilized Displacement (S denotes
the volumetric fraction of the invading phase), (b) Capillary-Viscous Fingering.
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Figure 3: The ratio %}“ (first term between brackets in (14)) vs. the extent x.. In the
inset are results from simulations in a 100 x 100 x 200 pore-network.
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Figure 4: Phase diagram of fully developed displacement in drainage for uncorrelated pore
networks.
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Figure 5: Characteristic patterns corresponding to the two regimes HS and HUS, obtained
from 2-D pore-network simulations in an fBm lattice with Hurst exponent H = 0.8: (a) The
correlation structure. (b) Displacement pattern for Ca = 0.1, M = 0.1. (c) Displacement
pattern for Ca = 0.1, M = 50.
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Figure 6: Phase diagram of fully developed displacement in drainage for correlated pore
networks.
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5. INVASION PERCOLATION WITH MEMORY
H. Kharabaf and Y. C. Yortsos
ABSTRACT

Motivated by the problem of finding the minimum threshold path (MTP) in a lattice of
elements with random thresholds, 7;, we propose a new class of invasion processes, in which
the front advances by minimizing or maximizing the measure S, = 3_; 7" for real n. This rule
assigns long-time memory to the invasion process. If the rule minimizes S, (case of minimum
penalty), the fronts are stable and connected to Invasion Percolation in a Gradient [1} but in
a correlated lattice, with Invasion Percolation [2] recovered in the limit |n| = co. For small
n, the MTP is shown to be related to the optimal path of the Directed Polymer in Random
Media (DPRM) problem [3]. In the large n limit, however, it reduces to the backbone of a
mixed site-bond percolation cluster. The algorithm allows for various properties of the MTP

and the DPRM to be studied. In the unstable case (case of maximum gain), the front is a
Self-Avoiding Random Walk (SAW).

INTRODUCTION

Many processes of practical interest involve disordered media or lattices of elements with
randomly distributed thresholds, 7; > 0. The typical problem comnsists of the application of
an overall difference in potential (or in pressure in the case of fluid flow in porous media), A®,
across opposite ends of a lattice (or of the pore-network representing the porous medium).
A lattice element remains closed to transport if the local potential difference is smaller than
its threshold, A¢; < 7;, but becomes open in the opposite case, A¢; > 7;. In these problems,
a quantity of significant interest is the minimum overall threshold, A®,,:,, or, equivalently,
the minimum gradient

2T
L o

at which a path of open elements first forms. In the above, the sum is over the Minimum
Threshold Path (MTP), which is unknown and must also be determined. The problem
typically arises in networks of diodes [4], in the flow of Bingham plastics in porous media
[5], and in the mobilization of foams in porous media [6]. In a more general context, where
each threshold is viewed as a penalty [6], it is a problem of determining the minimum overall
penalty (a problem in global optimization).

Roux et al. [4] studied aspects of this problem in the context of a network of diodes, by
considering two different cases, one in which the path is directed (no backtracking allowed)
and one in which it is not. They suggested that [V ®|;, is akin to a percolation threshold
and studied its dependence on the lattice size L. Their findings showed finite-size scaling
similar to Directed Percolation (DP) or Ordinary Percolation (OP), respectively, from which
they concluded that the onset of connectivity in this problem is of the same universality
class as percolation. Using numerical simulations in 2-D lattices of thresholds uniformly
distributed in (0,1), they further estimated |V®|nin(c0) = 0.231 and [V®|nin(c0) = 0.227
for the directed and non-directed cases, respectively. They also made the very interesting

IV@Imin(L) =
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observation that the two problems of the onset of conduction in a lattice of thresholds and
percolation, ought to be connected, as their respective thresholds are special cases of the
more general expression

. Zi 7.z_'n 1/n
L, = min ( 7 ) (2)
with n = 1 corresponding to the threshold-lattice problem and |n| = co to OP. Additional
information on the MTP or on its connection to percolation, was not provided, however.

Sahimi [5] provided estimates of |V®|:n(00) and conjectured that the MTP has the same
scaling properties as the well-studied [6] minimum path, l,;,, of a percolation cluster. The
latter (also known as the chemical distance) denotes the path on the percolation cluster with
the minimum total length (or tortuosity). It is known to be a self-similar fractal [7], scaling
as | ~ LPmin where Dpn is equal to 1.13 in 2-D and 1.34 in 3-D. Rossen and Mamun [6]
proceeded along similar lines and proposed a percolation approach for the MTP, consisting
of occupying lattice elements with progressively higher thresholds. Although commenting
that such a process is actually only an approximation, they also identified the MTP with
the minimum path, /.., of the percolation cluster thus obtained.

Closely related to the above is the problem of a Directed Polymer in Random Media
(DPRM) (see [3] and references therein). Here, a well-studied version involves a a directed
(stretched) polymer in a square lattice with one end anchored at the origin (z = 0, y = 0),
which is allowed to move in discrete steps along the two directions, z and y, subject to
the constraint |y(z 4+ 1) — y(z)| = 0 or 1, and that the polymer cannot turn back in the
z direction (overhangs not allowed). An energy cost, ¢, randomly distributed, is associated
with every step. The objective is to find the configuration that minimizes the total energy.
This problem was mapped to the celebrated KPZ equation (see [8]), which is known to give
rise to self-affine fractals, and is also connected to the more general problem of interface
growth and surface roughening (for example, wetting in porous media, burning of paper,
etc.) which also lead to self-affine fractals. As the MTP and DPRM problems both involve
the minimization of a global quantity, we expect that they also would be closely related.

At present, a firm connection of the lattice-threshold problem to percolation appears to
be lacking. In particular, the relation of the MTP to the minimum path of percolation, if it
indeed exists. is not self-evident. The latter pertains to the minimum sum of equal length
segments on the OP cluster, while the former is the minimum sum of distributed thresholds
in a regular lattice. Understanding this connection forms the main objective of this paper.
We present a new algorithm for the construction of the MTP, based on which its properties
can be studied. The novelty of the algorithm is that it requires the simulation of an invasion
process. similar to Invasion Percolation (IP), except that here the rules for the front advance
depend on the front history, as explained below. In implementing this algorithm, and in
conjuction with the remark in Ref. [3], however, we realized that the MTP problem can
benefit from the study of more general invasion processes, in which the front advances by
minimizing (or maximizing) the general measure

Sp=3 17 3)

for n real, and where the sum is over any path connecting any site at the front to the
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inlet boundary. As these involve the entire history of the process, we will refer to them as
Invasion Percolation with Memory (IPM). Both the non—dlrected and the directed problems
are considered.

In the non-directed case, the properties of invasion and of the generalized MTP, over
which S, is minimal, are studied. It is shown that the process of minimizing S, is related
to Invasion Percolation in a Gradient (IPG) [1], but in a correlated lattice, from which it is
inferred that the invasion fronts are rough, but not self-similar at all scales. A connection
of the MTP to the backbone of a mixed site-bond percolation cluster (obtained in the
limit |n| = o0) is, next, established. In the directed case, the IPM algorithm allows for a
generalization of the DPRM problem to arbitrary values of n and shows that the optimal
path of the latter approaches the backbone of the mixed site-bond Directed Percolation
cluster. We note in advance that an important difference between our approach and the
conventional one is that here we identify the optimum configuration between any two curves
(namely the polymer can originate from any point on a given curve, and not from the origin
only). For n = 1, the optimum path in the DPRM problem and the MTP are found to
be very similar, although not identical, based on which we conjecture that the MTP in the
small n limit is also self-affine. The identification (opening) of paths of higher energy, as the
applied potential difference exceeds the minimum value, is briefly studied. Finally, for the
sake of generalization, we also consider the case of maximizing S, (maximum gain), where,
in the presence of a trapping rule, the front is shown to be a Self-Avoiding Random Walk
(SAW).

Before we proceed, we note that the consideration of the various moments of 7 is equiv-
alent to considering distributions of new thresholds n = 7%, with pdf, arithmetic mean and
standard deviation equal to

i

fn) == <n>=——, gy=—D ()
=R T7=2%1 T U+nitom

respectively. For the more general problem of finding the MTP of arbitrary threshold dis-
tributions, we expect a rough analogy between patterns with the same ratio of standard
deviation to arithmetic mean, m = < 2, which for the present case reads m = 71+—2 Thus,
we anticipate that the results for large or small » would be analogous to those for processes
with arbitrary threshold distributions and large or small m, respectively. From (4), it is
apparent that for the existence of the arithmetic mean we must have n > —1, while for that
of the variance, n > —%. Therefore, for finite ﬁrst and second moments of general threshold
distributions, we must restrlct (3) to » > —3. However, some results for smaller n (which
formally correspond to Levy flights [9]) will also be presented (see Kharabaf [10] for more
details). We note that the DPRM problem with the pdf of (4) and n in the range (—1/2,0)
was singled out as a special case by Marconi and Zhang [9] who found that, in that range,
the meandering growth exponent varies with n.

The paper is organized as follows: First, the basic rules of the algorithm and the con-
struction of the MTP are presented. The process is generalized to arbitrary n and it is
shown that it reduces to IP in the two limits n — 4co0. Then we discuss the application
of the same algorithm to the solution of a simple version of the DPRM problem. IPM is
subsequently shown to be related to IPG in a correlated lattice, where an appropriate Bond
number is defined. Based on this analogy, the properties of the invasion fronts are elucidated.
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From these two relations to DPRM and IPG, it is suggested that the invasion fronts and
the corresponding MTPs of IPM are generally rough, reducing to self-similar fractals only
in the limit |n| = oco. Various properties of the fronts and the MTP are studied. Then,
the properties of higher-energy paths as the applied potential difference increases above its
minimum value, are briefly discussed. Finally, we present an extension of the IPM process
to the destabilizing case, where S, is maximized and where the front is shown to reduce to

a SAW.

IPM PROCESSES

Invasion Algorithm

Consider an invasion process from right to left in a lattice of sites and bonds. Invader
and defender reside on the sites of the lattice. The bonds have thresholds, 7;, randomly
assigned from a uniform distribution in (0, 1). The invading front advances one-site-at-a-
time following rules to be described below. Because both sites and bonds are involved, this
problem is actually a mixed site-bond problem, which is prototypical of fluid displacements
in porous media [11]. The rule for the front advance is as follows: Denote by F an arbitrary
site currently on the front, by F’ one of its (nearest-neighbor) perimeter sites in the defender
region (Fig. 1a, where a 2-D square lattice is used), by Fg.the site from which invasion will
actually proceed next, and by Fi the perimeter site to which the front advances during the
next step (Fig. 1b). A value V,(F') is recursively assigned to every site F' on the front (hence,
to all sites that have been invaded), through the following algorithm.

Let 7rp denote the threshold connecting site F' with one of its perimeter sites F”, and
form the sum

Snrr = Vo(F) + 1o (5)

Then, the threshold to be invaded next will connect the two sites, a “growth” site Fg and
the site to be occupied next, Fy, for which S, pps is minimum. We point out that in our
terminology, the term growth site has a different meaning from that of Roux and Guyon
[12]. Having made this determination, site F is identified, the front advances to F%, the
assignment

Va(Fg) = Va(Fo) + Thsr (6)

is subsequently made and the process is repeated. In this way, and by using the initial
condition Vi(R) = 0 for all sites R on the initial interface (which here is the right boundary,
but could be any other curve) (Fig. 1), all invaded sites are assigned a unique value V.
In contrast to IP, where the front advances by the local rule of selecting the smallest (or
largest) available threshold, here the advance depends on the past history, thus imparting to
the process a long-time memory. Through this algorithm, it is straightforward to show that
the value V,,(A), assigned to every invaded site A, actually represents the minimum sum of
thresholds among all paths that connect A to the right boundary (see Appendix A). The
corresponding minimum path from A to the injection (initial) side can be easily identified,
as discussed below.
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Typical snapshots of the occupied sites and of the corresponding MTP for n = 1 in a
2-D square lattice are shown in Fig. 2 at different stages of invasion (Fig. 2a-2c). Both the
front and the MTP have the appearance of rough but not self-similar curves. The MTP
across the lattice can be directly identified when the front first reaches the LHS boundary
(at “breakthrough”, site L*, Fig. 2¢c). It can be traced recursively, by starting from L*,
proceeding in the direction of decreasing V,, and identifying the next site P that belongs
to the path, and neighbors a site P’ already on this path (Fig. 2d), by requiring that the
condition V,(P') = V,(P) + 7&p: be identically satisfied. A similar procedure is used to
find the minimum paths (from the current front location to the right boudary) during the
different stages of invasion (Fig. 2a-2b), as well as the MTP originating from any invaded
site A. These paths are not necessarily subsets of the MTP.

In the simulations shown in Fig. 2, a trapping rule similar to Invasion Percolation with
Trapping (IPT) [13] was applied, such that a trapped site cannot be invaded. Thus, in the
invaded region, there exist closed regions, the sites of which have not been visited (Fig. 2).
However, this does not affect the values of V;, or the minimum path, as any paths that
traverse trapped regions cannot, by construction, be minimum paths. In the cases shown in
Fig. 2, the number density of the trapped regions is high, although their size is small. We
must point out, however, that by relaxing the trapping rule, and by continuing the invasion
process following breakthrough, all sites of the lattice can be invaded.

Because the function Vj is taken to be single-valued, a site cannot be invaded more
than once, hence a non-invaded bond between two adjacent sites at the front, such as F
and Fg in Fig. 1, cannot become open in any subsequent step (it is trapped). This has
the following consequences: (i) Between any invaded site A and the right boundary there
is one and only one self-avoiding path occupied by invaded sites. By construction (see
Appendix A), this path is the MTP from A to the boundary. (ii) Because of this absence of
reconnections, all invaded sites belong to distinct dendritic branches which originate from the
right boundary, but, otherwise, do not intersect one another (see also below). (iii) Depending
on the coordination number Z of the lattice, an occupied site can be the growth site for two
or more branches, but cannot be the termination point of two branches.

The IPM algorithm bears some relation with the “burning trees” algorithm of Herrmann
et al. [14] for obtaining information on the backbone and other properties of the percolation
cluster, and to the matrix transfer algorithm used in the DPRM problem. In the former,
a process mimicking invasion in a percolation cluster is considered and invaded sites are
labelled sequentially using consecutively increasing integers. However, the IPM algorithm is
more general. The “burning trees” algorithm results as a special case of the IPM problem
if the invasion is restricted to a percolation cluster only, all thresholds take the same value,
and a standard invasion percolation rule is taken for the invading front. The matrix transfer
algorithm can also be obtained as a special case of IPM if the invasion is initiated from a
single point only. We also mention an alternative but rather cumbersome algorithm, also
employed in MTP, which involves solving the Laplace equation in the original lattice, using
an applied potential difference sufficiently large for all elements to be open to conduction and
incrementally reducing the potential until flow ceases, at which point the minimum pressure
gradient is identified [5].
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Patterns

Typical patterns of the invasion fronts at breakthrough, along with the corresponding
generalized MTP, are shown in Fig. 3 for various values of n. In these and subsequent
simulations, lattice sizes ranged from 50 x 50 to 500 x 500 in 2-D, and from 10 x 10 x 10 to
40 x 40 x 40 in 3-D.

At small values of |n|, the fronts appear to be self-affine, with front widths and trapped
fraction of sites decreasing with decreasing |n]. For n = 0 (Fig. 3a), the displacement is
compact, the front width is equal to the pixel size, there are no trapped sites, and the MTP
is a straight line, as the minimum measure Sy is simply the smallest Euclidean distance from
the front to the right boundary. At a slightly larger n (Fig. 3b) the MTP appears to have
the structure of a multi-faceted curve. As n increases further (Fig. 3c-3e), front width and
trapped fractions increase, and the MTP is more tortuous. In the limit n — oo, the patterns
are shown to approach IP (Fig. 3f), where the front advances by selecting the perimeter site
with the minimum size. The corresponding IP pattern (Fig. 3f) suggests that this is indeed
the case. The same also holds for the case n — —oo (compare Fig. 3h and Fig. 3i), where it
can be shown that the pattern approaches that of IP, where the front advances by invading
the bond with the maximum size [10].

To prove the reduction to the IP problem in the limit n — oo, we proceed as follows:
Consider any two pairs of neighboring sites (F1, F]) and (F3, F3) such that the threshold of
the bond Fi F] is smaller than that of bond FyFj

TR F! < TFRF} (7)

We will show that in the large n limit the following inequality holds

Va(F1) + T mr < Va(F2) + 7,5y (8)

If valid, this implies that site F] is invaded before site F3, which is the desired IP rule. For
the proof, we rearrange (8) to read

Va(F2) < Va(Fo) + [1 _ (3‘1) n] 9)

TR, F}

and take the large n limit. In view of (7), the inequality in this limit further reduces to

Vo(F) < ValF2) + Thy Ry (10)

However, the latter is always valid, as its reverse implies V,,(F3) < V,(F1), namely that site
F has been occupied before site F, in contradiction with our implied assumption that site
F} is a perimeter site. It follows that in this limit, it is the bond with the smallest threshold
that is invaded next. This is identical to the IP rule (which in this particular example has
a rough physical analogue in imbibition, namely the displacement of a wetting by a non-
wetting fluid in porous media [11]). An identical argument applies for the limit n — —o0,
except that now it is the bond with the largest threshold that is occupied next [10]. Either
problem involves site-occupancy, bond-percolation with bond trapping. The existence of
bond trapping is important for the properties of the limiting percolation problems. Patterns
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in the range (—1/2,0) were also investigated, in view of the special attention paid to this
range in the corresponding DPRM problem. The patterns were found to be similar to the
case of small and positive n, however.

The IPM algorithm can readily simulate IPM in a radial geometry, in which invasion
originates from a single point. In essence, this is a modification of the conventional DPRM
problem to invasion which is not directed. An invasion pattern and the corresponding MTP
for n = 1 is shown in Fig. 4. The pattern reveals a rather compact displacement with a
rough front, quite analogous to the rectilinear invasion case. Similar results were found for
the same process in 3-D lattices [10]. Finally, we note that processes with other measures can
also be defined: For example, we may consider a stage process, where each element (stage)
has efficiency 7;, with 0 < 7; < 1, and where the maximization of the overall efficiency, []; 7,
is sought. Through the transformation 7 = —log, the problem can be mapped into the case
n = 1, considered previously, except that now the measure to be minimizedis H = — 3;logm;,
namely the thresholds are distributed in the different interval (0, co). Likewise, we may define
the information (entropy) measure I = — ¥; ;log7;. The minimization of either H or I also
leads to fronts similar to the n = 1 case (see [10]).

Directed Invasion

The IPM algorithm was next modified to simulate a directed invasion percolation process.
In this version, the front is not allowed to invade bonds in a direction opposite to the main
invasion direction (which in the illustrations of Fig. 1-3 is from- right-to-left). As a result,
the corresponding MTP is also directed. To show this, we recall that the tracing of the MTP
involves the successive connection of pairs of sites, which at some stage of the process were
a front growth site and its perimeter site to be occupied next, respectively. As a result, this
renders the MTP directed. Using arguments identical to Appendix A for the non-directed
case we can show that the directed version leads to the identification of paths that are
directed and also minimize the sum of thresholds. In particular, the MTP at breakthrough
corresponds to the optimal path of the simplest version of the DPRM problem which shares
the same origin as the MTP. The IPM algorithm can be used in the study of more general
DPRM problems, and we hope to report on these in the future.

Snapshots of the resulting patterns are shown in Fig. 5 for variots values of n. In the-
case n = 1, the optimal path of the DPRM problem is known to be a self-affine curve with
a zero transverse average, but with an increasing variance

< |y(z)| >~ =7 (11)

where the meandering exponent vpp has the exact value vpp = 2/3 [15]. As pointed out,
this problem can be mapped to the KPZ equation [8], which is a generic model for surface
roughening and surface growth. The self-affine behavior is apparent in Fig. 5b. As in the
non-directed case, the path appears to be multi-faceted for sufficiently small n (Fig. 5a), while
fronts and minimum paths become more tortuous as n increases (Fig. 5¢-5d). In the limit
In| — oo the problem becomes a directed, site-occupancy bond IP with bond trapping, and
the optimal path becomes its backbone (see Fig. 5e and Fig. 5f). The approach to this limit
can also be proved theoretically using arguments similar to those for the non-directed case.
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The significant variation of the path properties as n varies has not been reported previously,
to our knowledge, most investigations having focused on eithern =1l or —1/2<n < 0. In
fact, the apparent effect of disorder in varying the patterns from multi-faceted (at small n) to
self-similar (at » — o0) is analogous to the behavior reported in [16], in a different context,
and deserves further attention, as it may contradict the apparent universality associated
with the DPRM problem.

Comparison with the non-directed case (Fig. 3) shows that for small values of n the two
processes are identical (for example compare the patterns for n = 1 or smaller, and also note
the very close similarity even for n = 3). In fact, the two patterns for n = 1 in Fig. 3 and 5 are
identical, although this happens to be a coincidence of the particular realization. Different
realizations show that the MTP for n = 1 contains occasional overhangs, the probability
of which is briefly discussed below. As n increases to larger values the difference between
directed and non-directed invasion increases, both with respect to the invasion patterns and
the resulting MTP. The close relation between non-directed and directed IPM processes at
small n suggests that the MTP for n = 1 has properties similar to the optimal path of the
DPRM. On the other hand, the divergence of patterns and paths at larger n shows that
this connection does not extend to arbitrary threshold distributions, and specifically those
involving relatively large n (large threshold variance or large m). We infer that the MTP
coincides with the optimal path of the DPRM at small n, but it differs from it at larger n.

CONNECTION TO GRADIENT PERCOLATION

In essence, the IPM algorithm simulates an Invasion Percolation process, in which the
front advances by penetrating perimeter sites with the smallest value of V,. The front
dynamics reflect the distribution of this field, and to understand better the IPM process, it
1s necessary to consider the distribution of V,,. For future use, we need to point out that the
value of V,, at a site can be likened to the energy of the minimum path from that site to the
boundary, just as in the DPRM problem, the statistics of which have been well elucidated.

Fig. 6 shows various properties of the distribution of V; for a fixed spatial location z
(namely over all sites on a column transverse to the main invasion direction). The pdfs at
a fixed z appear to be close to a Gaussian (Fig, 6a), but with spatially varying arithmetic
mean, V;, and standard deviation, ov;, and to have the general dependence

o) = 9(¢)
Ve =

Here g is the distribution function, the precise form of which is not important to this paper,
and we have defined the normalized variable ¢ = Y=Y{2) The functional form (12) is

oy (z) °
consistent with the corresponding results for the DPRM problem [17]. The variation of V;
with z is shown in Fig. 6b. After a short transient, the mean is found to increase linearly
with distance, with a constant slope C;, which is closely related to £;. The latter also varies
with distance, to reflect the finite-size scaling anticipated from [4]. Analogous results are
expected for the general n case, where we have dV,,/dz — C,. However, we expect that the
approach to the limit is much slower at large n, and in fact that at n — co the transient

(12)

110



lasts until breakthrough. The variation of the mean with distance is consistent with the
corresponding result in the DPRM problem, where [17]

d<E>
4z (13)
The variation of the standard deviation, ov,, is shown in Fig. 6¢c. It is apparent that the
variance increases (at least for a substantial fraction of the lattice length), although its rate

of increase diminishes at larger z, suggesting a power-law variation with an exponent smaller
than unity. We recall [17] that the corresponding DPRM problem has the scaling

SN

= D1 + sz—

z
op~ Lif <—3> (14)

L2
where L is the lattice size and the function f has the asymptotic behavior, f ~ z3 for z < 1
and f ~ const. for z > 1. By analogy, therefore, we expect a similar scaling for the general

n MTP problem

ov, ~ L* f, (Lin) (15)

where the exponents X, and z, may depend on n and need to be determined. This is not
attempted here. In this paper, we will proceed only with the assumption that 0 < x, < 1, as
suggested in the simulations. In passing, we note that previously reported DPRM simulations
pertain to n = 1, and it is possible that the exponents of (13) and (14) may also vary as a
function of n. This problem also deserves further attention.

From the above it is apparent that V,, consists of a transverse average linearly increasing
with z and of a perturbation, 1, namely

with ¢ = 0 and with oy, scaling as in (15). In view of the previous, the ratio of the standard
deviation to the mean must decrease as z increases. The two facts that the transverse average
of V, increases with z and that the rule for the front advance is to seek the minimum V,,,
suggests that IPM is closely related to Invasion Percolation in a Gradient (IPG). We recall
that IPG is invasion percolation in an externally applied gradient (e.g. due to a body force,
such as gravity, or to a gradient in the bond size [18]), giving rise to a percolation probability
gradient measured by the Bond number, B. The invasion pattern has the fractal properties
of an IP cluster near the front over a scale equal to the front width, or, but it occupies a
compact region away from it. The front width scales with B as [1]

op ~ B77 (17)

where v is the OP correlation length exponent.

To investigate the connection to IPG, the properties of the perturbation % are needed.
Fig. 7 shows a grayscale plot of 1 obtained from simulations in a 200x 200 lattice. Also
shown, for comparison, is a map of white noise on the same lattice (Fig. 7b). It is clear that
the noise generated by the IPM is not an uncorrelated white noise (as in standard IPG) but it
is correlated in space. For a more quantitative measure of the correlation we constructed the
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variograms of 1 in the two different directions [10]. Both variograms displayed correlations
growing as a power-law in space, similar to fractional Brownian motion (fBm), with a positive
Hurst exponent (H) [19]. For the case n = 1, we found H = 0.32 < 0.5 and H = 0.41 < 0.5
in the respective directions. The Hurst exponent was found to steadily decrease with n (for
example, H = 0.13 and H = 0.19 in the respective directions for n = 5, see [10]).

The development of strong large-scale correlations at relatively small n is expected from
the definition of the invasion rules. After the front has reached a steady-state mean velocity,
the perturbations of two adjacent sites A and B would satisfy ¥p = ¥4 + 735, if sites 4
and B are along the y-direction, or ¢ = ¥4 + 74, — L7, if along the z-direction (and
where we assumed that the pairs of sites are the growth site and its next to be occupied
site, respectively). Then, it is evident that the perturbations of adjacent sites are strongly
correlated, and that this correlation diminishes with increasing n. However, this argument
also shows that the correlation should be isotropic. We suspect that the anisotropy found
in [10] is due to the early transient.

Using the above information we can establish a connection between IPM and IPG. The
connection to IPG is demonstrated in Appendix B, where we show that after the early
transient, IPM is an IPG with a Bond number given by

O'Vn(mF)

B.=D. [i] ()

where the constant D. solves an algebraic equation depending on the form of the scaling
function g. The two keys to this relationship is the assumed scaling of V,,, equation (12),
and the decay of the derivative of oy, with distance, equation (15) (although for a 2-D square
lattice and a symmetric g the latter condition is not necessary, see Appendix B). Contrary
to conventional IPG, however, the above Bond number is not constant but varies with z, as
a result of the variation of ov,. Equation (18) can be further approximated as

Lo
OvVn (xF )
since C, eventually approaches L2 (see below).

The identification of IPM with IPG allows us to express the scaling of the front width, or,
with the above-defined Bond number. Now, however, we must consider IPG in a correlated
lattice with growing correlations, as suggested in Fig. 7. Despite this, the same arguments
used for the conventional IPG scaling (17) apply here as well (see also [20]), except that
v should be the correlation length exponent corresponding to percolation in such a lattice.
Percolation in long-range correlated lattices of the fBm type has been studied by Isichenko

[21] who showed that for H > 0 the correlation length exponent diverges, v — co. For IPG
in such lattices, therefore, substitution in (17) leads to the scaling

B, ~ (19)

op ~ B;l (20)

The theoretical prediction (20) is tested in Fig. 8, which shows a plot of the front width,
computed as in [1], vs. the above-defined Bond number. The data at relatively large B, are
fitted very well with a straight line of slope -1, as indeed predicted from (20). At smaller
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B, (larger n), the slope decreases and eventually becomes zero, as the lateral lattice size
interferes with the process (as in IPG) and the front width saturates.

Equation (20) also allows us to relate the standard deviation of V, to that of the front.
Substitution of (18) in (20) yields

oF ~ oyy(ZF) (21)

which suggests that the ratio of the front width to the standard deviation of V,, is constant.
A plot of this ratio for a particular realization of IPM with n = 1 is shown in Fig. 9. It is clear
that after some early transients, the ratio fluctuates around a constant value, as predicted
from equation (21). This behavior was also confirmed for other values of n, although the
transient period increases with n. Equation (21) indicates that the variation of the front
width with distance follows the same scaling as the standard deviation of V,, which was
conjectured in (15) to have a self-affine scaling. This leads to the result

or ~ Lf () (22

where the function f has the same asymptotic scaling.

In summary, in this section we established a connection of IPM with IPG, with two
important twists: that in IPM the probability gradient is generated dynamically during the
process instead of being externally specified; and, at least for finite n, the process is one of
Gradient Percolation in a correlated field. We note that identical findings also apply for the
directed problem, hence a connection must exist between the DPRM problem and IPG in a
correlated field. This connection is worth exploring further. '

GENERAL RESULTS

Using the previous algorithm, various quantities of interest can be calculated. In par-
ticular. we consider the MTP, the minimum gradient and the MTP tortuosity. A study of
the distribution of thresholds can be found in [10]. All these results are for the non-directed
case. Results for the directed problem will be reported in a future study.

Minimum Threshold Path

The MTP for n = 1 is shown in Fig. 10 for invasion in a cubic lattice. Generalized MTPs
for variable n were shown in Fig. 3. These vary from a straight line for n = 0 to self-similar
fractals for n = |oco|. The increase in tortuosity as |n| increases is due to the change of the
invasion front from compact to self-affine to self-similar, as discussed above. For a finite n,
therefore, and specifically for n = 1, we expect that the MTP is a self-affine curve (in the
more general definition of Feder [19], which also encompasses gradient percolation fronts)
with a width that decreases as [n| decreases. In particular for sufficiently small ||, the MTP
coincides with the optimal path of DPRM. As |[n| — oo, the MTP approaches a specific
limiting curve. To understand its properties we first recall that for any n, the invading
phase resides on self-avoiding dendritic branches emanating from the right boundary. These
branches have the property that any two invaded sites on the same branch can be joined

113




by only one self-avoiding path consisting of invaded sites, while invaded sites belonging to
different branches cannot be joined by any such path (except by a path that passes from
the origin). The MTP is part of the backbone of these branches, after dendritic fractions
are suppressed. Figure 11 shows the backbones of the various branches at the breakthrough
point for n = 1 and n = oco. In the first case (and also when |n| is not large), many
parallel-like branches co-exist, and the MTP is the part of the particular branch that has
reached the opposite side. However, in the percolation limit, |n| = oo, a dominant branch
develops. By definition, this branch, which is also the MTP at the |n| = oo limit, is the
backbone of the cluster of a site occupancy-bond IP with bond trapping, obtained in the
large |n| limit. Therefore, in the general n case, the MTP is unrelated to a property of the
percolation cluster. In particular, the MTP for » = 1 is not a self-similar fractal, but instead
it is a member of a general family of self-afine curves that includes as a limit (large |n|)
the backbone of a site-bond percolation cluster. Because, contrary to regular site- or bond-
percolation, this percolation process involves a looples percolation cluster, the MTP in that
limit is also a loopless fractal. It can be shown that the latter is a subset of the backbone
of the invasion cluster in conventional bond percolation, but it does not coincide with the
conventional chemical distance of percolation [10].

In a recent paper, pointed to us by one of the reviewers, Cieplak et al. [25] proposed a
loopless IP similar to IPM for n = oco. They reported that the backbone is a self-similar
fractal with fractal dimension D = 1.22 in 2-D and D = 1.42 in 3-D. In agreement with our
observations, they also found that the geometry of this backbone is not the same with that
of the chemical distance on the percolation cluster.

Similar results are obtained for the optimal path of the DPRM problem in the large |n|
limit, which can be shown to be the loopless backbone of the corresponding directed IP
cluster. The significance of the variation of the optimal path of the DPRM problem with n
was commented in section II.

Minimum Gradient

Another quantity of significant interest is the generalized percolation threshold, £,,, which
in the case n = 1 reduces to the minimum gradient, |V®|nin = £;. It was found that after
some transients, £; stabilizes to a mean value approximately equal to 0.305 £ 0.01. The
corresponding value for 3-D cubic lattices was found to be 0.196 + 0.005. These compare
well with the respective values of 0.29 and 0.17, reported by Sahimi [5]. The value of 0.22
found by Roux and Herrmann [4] in a square lattice tilted at 45° is also consistent with the
above, if we make the obvious transformation 0.305/v/2 = 0.22, to reflect the difference in
the definition of length L in the two problems. The latter results were also verified in [10]
by additional simulations in a tilted 200 x 200 lattice, which gave the value of 0.2232.

The variation of the more general measure £,, with n is shown in Fig. 12 (includingn < 0).
For positive n, this measure is a monotonically increasing function of » and approaches the
limit Lo — p. = 0.5, as anticipated by Roux et al. [4]. Indeed, from definition, we have

2T = Tmes {14— > 6?] = Tras (23)

iFmaz

114



where the notation is self-evident and we have taken €; = 7;/Tnqer. It follows that

. . Tmaa: . 1

Lo = min hmn_mm = min Thez (f

where p. is the threshold to a percolation process in which the front advances by invading

the minimum threshold. A similar analysis holds for the opposite limit n — —co, where

the limit £_,, — 1 — p. was also verified. In view of the relation between the moments for

general n and general pdfs, these results provide a qualitative picture of the dependence of

the minimum sum of thresholds distributed from general pdfs, on the ratio of the standard
deviation to the arithmetic mean.

We also note that L7 is related to the slope C,, of the spatial variation of the mean for
the following reasons: The arithmetic mean V,, approaches the mean of V; sampled over all
front sites. However, the latter also approaches L2, because by construction, the maximum
difference between any two values of V,, at the front is bounded by max7™ = 1. Hence,
for a sufficiently large lattice or a sufficiently small n, all values at the front (including
the minimum sum L?) eventually must grow at the same rate. This does not necessarily
imply that the width of the front approaches a constant, however. Thus, we also expect the
asymptotic relationship

0
) = min Tmez = Pe (24)

~ L7 : (25)

for all n.
Tortuosity of the MTP

A final quantity of interest is the tortuosity of the MTP. We expect the tortuosity to be
constant for a self-affine curve and size-dependent for a self-similar fractal. The variation of
the tortuosity, ¢1, of the MTP with n = 1 with lattice size was studied in [10], where it was
found that although fluctuating at smaller sizes, it approaches a constant value at large sizes,
the width of the fluctuations decreasing to zero. This adds support to our observation on
the self-affinity of the MTP. From our simulations we found #; = 1.314+0.01 and 1.55+4:0.02,
for 2-D square and 3-D cubic lattices, respectively. These tortuosity data are new. The
tortuosity of the generalized MTP was found to increase with n, however, reflecting the
increased variance of the threshold distribution (see [10]).

Since the tortuosity is not a universal property, it will be affected by the particular
shape of the threshold distribution. A simple, local, model for an arbitrary distribution of
thresholds can be obtained as follows: We recall that the tortuosity of the MTP reflects the
advantage incurred to the path in occasionally taking transverse steps that minimize the
energy cost. Fig. 13 shows schematically some of the infinitely many possibilities, for the
advancement of the path in one increment in the direction, z. Denote by P; the probability
of the MTP taking a total of k steps in order to advance by a single increment in z,

Pk=Pr[Tz+73+"'+Tk+1<Tl] 3 k=2,3)"' (26)

115

e e LT TPNNITL ST e




where the values of 7 are random thresholds from a given pdf. Then, the total path length
[ is equal to

I=L(1+ > w(i-1)PR) (27)
1=2,00
where w; is the number of different configurations corresponding to a given number of steps
(for example, ws = 2 in Fig. 13). Given a pdf, the various probabilities above can be
computed. In particular, for the case of a uniform pdf in (0, 1), which is also the previous
n =1 case, we can compute the probabilities of (26) to find [10]

1

b= 28
For the tortuosity of the path requires that the weights w; be computed. For the square lattice
configuration of Fig. 13, wy = ws = wy = 1, but ws = 2, etc.. Configurations of a larger
number of steps have larger w;, but substantially smaller probability. If, as an approximation,
we take w; = 1 for all ¢, we obtain the result {; = 4—e = 1.282, which is reasonably close to
the numerical value given above. The discrepancy is due to the assumption made. Inclusion
of path multiplicity, which increases with &, will lead to an improved agreement. This simple
model can be used to investigate the effect on the MTP tortuosity of more general pdfs [10],
or to estimate the probability of an overhang in a path (such as depicted in Fig. 13e, for
example).

HIGHER-COST PATHS

In many applications, such as the flow of Bingham plastics and foams in porous media
[5], [6]- [22]. the behavior following the onset of flow or displacement is of significant interest.
In this context, the identification of paths of higher cost (energy) than the MTP is necessary.
This problem also arises in the DPRM case, where patterns reminiscent of river deltas were
found {3]. In this section, we use the IPM algorithm to identify these paths as the applied
potential difference across the lattice increases. We note, again, that contrary to the DPRM
problem. where all paths originate from a single point, here the paths can originate from
many different points on the injection face.

When the applied potential gradient exceeds the minimum |V®| > |V®|,,;», additional
bonds. not belonging to the MTP, can become open. The new paths that are formed are
identified by the condition that the overall sum of thresholds on them exceeds the minimum
potential difference but is smaller than or equal to the applied. We proceed by identifying
the sequence of paths with progressively higher energy. Only the threshold across a bond is
considered to contribute to the cost across an open bond (namely there is no flow-induced
potential drop, as would be for example the case in the flow of a Bingham plastic). The
new paths can be completely new paths, unrelated to the MTP or other open paths, or they
may share with them some of their bonds. In the latter case, an open path could act as a
bridge between two already open paths, it may form a loop with one path, or it may connect
one end of the lattice to a point of an already open path. The algorithm to find such paths
must simultaneously identify the path and also determine its cost (the necessary potential
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gradient to make it open). It is described in the following. For simplicity, the discussion will
be restricted to the n = 1 case, the generalization to other values of n being straightforward.

We recall that at the conclusion of IPM, a value V' (where the subscript n was ommitted)
is assigned to every invaded site, that denotes the minimum overall threshold from the site
to the RHS boundary of the lattice. Consider, next, another IPM process, now from the left
side, through which another function, W, is assigned to each site, that denotes the minimum
overall threshold from the site to the LHS boundary of the lattice. The minimum potential
®;; needed to open a bond between two adjacent lattice sites 7 and j (see Fig. 14) must be
the minimum of the cost of the two alternative pathways, namely

®;; =min (Vi + 7 + W;,V; + 7o, + W) (29)

Hence, from a knowledge of the functions V and W at every site, the minimum potential to
open a given bond, ®;;, can be computed.

Having assigned @, the algorithm proceeds sequentially from low to high energies by
identifying the candidate bonds belonging to the next open path. Fig. 15 shows the opening
of the various paths as the potential difference increases. As expected, the first such path
is the MTP. The successive opening of new paths is apparent in the model. These form
correlated pathway regions (valleys), which are different than the paths of OP. The successive
opening of pathways leads to “flooded” regions of increasing width analogous to the “river
deltas” of the DPRM problem. Based on these results, the fraction of bonds belonging to
open paths vs. the applied potential gradient can be computed. Fig. 16 shows the results
obtained. After the minimum gradient, the fraction of open bonds increases following an
S-shape curve. The curve has percolation-like characteristics, in that there is a threshold
L;, but it is not actually related to percolation, except in the limit of large n. In fact, the
scaling of the curve (for » = 1) near the threshold, was shown by Roux et al. [4] to be a
power-law with exponent equal to 2. The results of Fig. 16 were used in [22] to model the
fraction of flowing foam in porous media.

UNSTABLE PROCESSES

In the above, we studied stable IPM. We can extend the study to “unstable” invasion
processes, where the thresholds are viewed as gains, rather than penalties, and where instead
of minimizing the cumulative threshold (penalty) we maximize the cumulative gain. Thus,
the rule for the advance of the front would maximize, instead of minimizing, the measure S,,.
The corresponding algorithm is trivially implemented. A typical snapshot of such processes
from simulations in a 2-D lattice is shown in Fig. 17, where a trapping rule was implemented.
In the case of trapping, the invading phase consists of a singly-connected self-similar thread
of sites. Contrary to the previous case, the front is a self-similar fractal and was found to be
identical for all n.

In the case of trapping, we can show that this path of maximum gain is a Self-Avoiding
Random Walk (SAW) constrained to take place to the right of the invasion boundary. Indeed,
by construction, the growth site is always the tip of the front, the site to be invaded next being
the one of Z—1 neighbors (where Z is the coordination number of the lattice) with the largest
value of 7% . This process can be equivalently simulated by randomly advancing the tip to
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one of its neighboring unoccupied sites. The resulting path has the SAW properties. Because
of the trapping rule, however, the path obtained is not the global maximum, which would
obviously consist here of a path that covers the entire lattice (of dimension 2). Properties of
SAW have been extensively discussed in previous references [23].

The difference in the invasion fronts as we switch from minimizing the penalty to max-
imizing the gain is similar to the change from IPG in a stabilizing gradient to IPG in a
destabilizing gradient in percolation processes [24]. The rule of minimizing the cumulative
penalty stabilizes the propagation of the front, in contrast to the rule of maximizing the
cumulative gain, which creates a great degree of instability. A similarity can also be drawn
between anti-DLA compact fronts and DLA fractal fronts [11], which characterize viscous
stable and viscous unstable, respectively, displacements in porous media.

CONCLUSIONS

Motivated by the problem of finding the path that minimizes the sum of thresholds
in a lattice of elements with thresholds 7;, randomly distributed in (0,1), we developed a
class of invasion processes, in which the front advances by minimizing or maximizing the
measure S, = »; 77, where n is a real number. Because this rule assigns long-time memory
to the invasion front, these processes belong to a new class of Invasion Percolation with
Memory (IPM). Depending on whether the rule minimizes or maximizes S,, the invasion
fronts are either stable and self-affine (case of minimum penalty) or unstable and fractal
(case of maximum gain). The stable case was connected to Invasion Percolation in a Gradient
[1], but in a correlated lattice with self-affine correlations of the fBm type (positive Hurst
exponent [19]), with Invasion Percolation [2] recovered in the limit |r| = co. In the unstable
case, the IPM process was found to be a Self-Avoiding Random Walk (SAW), for any n.
These processes also include as a special case the (simplest) problem of Directed Polymer
in Random Media (DPRM) [3], by restricting the invasion to one direction. An important
difference is that the IPM algorithm leads to optimal paths that can originate from any point
along a curve.

The algorithm is well suited for the identification of minimum threshold paths (MTP)
that minimize the sum of 7* across any two curves (as well as from any site to a given curve).
For the corresponding DPRM problem, the MTP becomes the optimal path of DPRM, which
for the case n = 1, is known to be self-affine. In general, the MTP was shown to range from
a straight-line in the case of n = 0 to a multi-faceted curve at small n to a self-similar fractal
in the large |n| limit. The latter is the backbone of a mixed site-bond percolation cluster,
and differs from the standard backbone of OP in that it does not contain reconnections (it
is loopless). Its properties were recently studied in [25]. The MTP for n = 1, corresponding
to the classical problem, is not a self-similar fractal and does not coincide with the minimum
path of OP. Instead, it is very closely related to the optimal path of DPRM and appears
to be self-affine. The dependence of the MTP on n raises questions about the universality
of the corresponding optimal path of the DPRM problem, when distributions with a large
variance are considered. Various results on the MTP, the minimum gradient and the path
tortuosity were obtained. In particular, the algorithm allows the identification of paths of
higher energy (cost), which generalize the “river deltas” of the DPRM problem.
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APPENDIX A

Proving that V,,(A) represents the minimum sum of thresholds from site A to the injection
boundary, is equivalent to proving that the minimum threshold path from A to the injection
boundary is the MTP determined algorithmically using the IPM process (path £ in Fig. 18).
First, we recall that through the IPM algorithm, all sites in the lattice can be invaded, and
thus be assigned a unique value V,. This can be accomplished by continuing the invasion
process following breakthrough, and by also removing the trapping rule.

To prove our assertion, we use a reduction in absurdio argument: Assume that there
exists another alternative path, denoted as £* in Fig. 18, and consider the first site B on
path £ at which the two paths first diverge. Without loss in generality, we can take this site
to be site A. (In the opposite case, we can apply the argument for site B. If the minimum
threshold path from B is the MTP determined from the IPM algorithm, then, by extension,
path £ from A will also be the MTP). For future use, we consider the invasion stage when
site A becomes invaded for the first time. In the notation of the text, at tha.t time site A
will be denoted as site G’. By construction, the value V,(A) assigned to it corresponds to
the minimum value of S, ppr = V,(F) + 7f, for every site F' on the invasion front at that
time. By the same token, V,(A) must also be larger than the value V,,(I) assigned to all
invaded sites I (including the front sites) prior to this time, since in the opposite case, site
A would have been invaded at an earlier time. Hence, we have the inequalities

Va(F) < Va(A) < Va(F) + 755 (30)

for all sites at the front. Furthermore, the second inequality also implies

Va(A) < Val) (31)

for all sites I’ invaded following the invasion of site A. The corresponding MTP (path £ in
Fig. 18) connecting A to the RHS boundary is traced with the use of the IPM algorithm as
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discussed in the text. In particular, this path contains the bond AG, where G is the growth
site for A.

Assume, now, that path £* is the MTP. This implies that the sum of thresholds along
this path is equal to a new value, V*(A), where

V2(A) < Va(4) (32)
and that site G* on L* adjacent to A has also assigned to it a value V*(G*) such that
V2(A) = Vi (For) + o (33)
where
Vo (Fo-) < Va(Fo-) (34)

Inequality (34) follows from the fact that in the reverse case, we would have V*(A) > V,(4),
due to (30) and (33), in case site G* was a front site at the time site A was invaded, or
due to (31), in case G* was invaded after site A. By comparing (32) and (34) it follows
that to prove the existence of a path at A alternative to the MTP determined from the
IPM algorithm, requires to prove the same for site G*. By induction, therefore, the problem
is reduced to proving the validity of inequality (32) for the first ever site A invaded. But
this is not possible, since for such a site, V,,(A) represents by construction the minimum
threshold adjacent to the injection face. It follows that inequalities (34) and (32) are not
valid, thus, the MTP determined from the IPM algorithm is the path that minimizes the
sum of thresholds, as claimed.

APPENDIX B

Consider bond Invasion Percolation in a field of V' values (where we have omitted sub-
script n for simplicity), with the following pdf
9(9)
Viz) = =——= 35
fv,o) = 2% (35)

where g is a function of the normalized vairable 8 = V;—Vfl Conventionally, in IP the front

advances by penetrating the perimeter bond with the smallest value of V. Let the mean
front position at a given stage of the process be zr, and assume that the bond to be invaded
next has the value Vas. Then, we can assign to any position z, a percolation probability
fraction p 4

Vi
p)= [ f(V,a)dv (36)
which, in view of (35) can be simplified to
o)~ 6 (B2 (37

Here we defined
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c@) = [ _ondn (39)

and also assumed that z is sufficiently large for V(z)/ov(z) > 1 (since at large z, oy grows
slower than V(z)). Now, (37) also applies at the mean front position, where as is well
known from the theory of Gradient Percolation [1], p is equal to the percolation threshold,
p.. Hence,

pe= 6 (L Z0)) (39

ov(zr)

This is an algebraic equation with respect to the argument, the solution of which leads to
an expression for Vas. By denoting its root by 6., we find

VM = Uv(xp)oc -+ V(:Z:F) (40)
As an example, we may take a Gaussian distribution, for which the expressions corresponding

to (38) and (39) read G(#) = (1 +erff) and p. = 3 (1 + erf (M)) respectively, and

ov(zF)
.where 6. is the root of

1
5(1 + erff,) = p. (41)
In the latter case, we also have, 8, = 0, or . = —0.48 for a 2-D square or a 3-D cubic lattice,

respectively. We note that the result 8. = 0 is also valid for all 2-D square lattices with even
g-

Now, we can substitute (40) in (37) and expand in a Taylor series around the mean front
position zr to obtain around the front

p=p.— Bz —zc) + O((z — zc)°) (42)

where the Bond number B is equal to

v doy
B =G'(6, e __ | ¢, dz 43
(6. [GV Esrh k| (43)
which for a Gaussian, also reads
—6? v doy.
B — exp( c) dz + 0C dx (44)
T Gv(xp) oy F

Thus, if we further assume that élg% decreases with z to zero, as is the case with V,,, the
second term in the RHS inside the brackets becomes negligible at large z, hence

B= D, [O'V(;F)] (45)

where D, = G'(6.). This relationship is exact for 8, = 0.5, for example for even pdf’s in a
square lattice.
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Figure 1: Description of the invasion rules, before (a) and after (b) a growth step. Invasion
occurs from right to left. F' denotes a front site, F” a perimeter site, Fg is a growth site and
F{, is the site occupied next. The process is site-occupancy bond-invasion percolation.
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(d)
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Figure 2: Snapshots of the invasion process (occupied sites in grey) and of the MTP at
different stages of invasion (a)-(c) for n = 1 in a 100 x 100 square lattice. Periodic boundary
conditions were used. L* denotes the site at “front breakthrough” on the left boundary.
Fig. 2d shows the terminology used to identify the MTP. Note that the MTP at different
stages is not necessarily a subset of the final MTP.
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Figure 3: Invasion fronts at “breakthrough” and corresponding MTPs in a 100 x 100 lattice,
forn =0 (a), n = 0.5 (b), n = 3 (c), n = 10 (d), n = 100 (e). Pattern (f) is Invasion
Percolation, where the front advances by penetrating the bond with the smallest threshold.
Pattern (g) is for n = —10, pattern (h) for n = —100 and pattern (i) corresponds to Invasion
Percolation, where the front advances by penetrating the bond with the largest threshold.
Note the similarity of (e) with (f) and of (h) with (i). Fronts become more self-similar, and
the fraction of trapped sites increases (MTPs are more tortuous) as n increases.
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Figure 4: Invasion pattern and the corresponding MTP for n = 1 for IPM in radial geometry
(originating from a single point of a 300 x 300 square lattice).
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Figure 5: Invasion fronts at “breakthrough” and corresponding MTPs for directed invasion
and for n = 0.5 (a), n =1 (b), n = 3 (c), n = 10 (d), n = 100 (e), and Directed IP (f). The
optimal path of this DPRM at large n is the backbone of a directed percolation cluster.
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Figure 6: Statistics of the energy (cost) distribution V) from simulations in a 100 x 100
lattice: (a) The pdf at three different values of z (equal to 0.25, 0.50 and 0.75), (b) the

variation of the arithmetic mean V; with z, and (c) the variation of the standard deviation,
oy, with z.
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Figure 7: Grayscale plot of the perturbation % for n = 1 from simulations in a 200 x 200
lattice (a). Figure (b) shows a Gaussian noise for the same lattice. Darker colors correspond
to smaller values.
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Figure 8: Log-log plot of the front width or vs. B, for different lattice sizes and for » in the
range (0,3). The straight line in the inset has a slope of —1. Comparison with the theoretical

slope —327, suggests that IPM is an IPG in a long-range correlated field (v = c0).
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Figure 9: Spatial Variation of the ratio of the front width vs. the standard deviation of
Vi. The ratio stabilizes to a constant value after an early transient, consistent with the

prediction of (21).
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Figure 10: The MTP for n =1 for a 3-D cubic lattice 20 x 20 x 20.
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(b)

Figure 11: The backbones of the dendritic branches, on which all invaded sites reside, orig-
inating from the right boundary for IPM with (a) n = 1 and (b) » = oco (site-occupancy,
bond-invasion percolation with bond trapping), from simulations in a 100 x 100 lattice. For
n = 1 the backbones appear self-affine and “parallel” to each other. Note the single domi-
nant branch for n = co. The MTP for n = oo corresponds to the backbone of the loopless
IP and it is a self-similar fractal. Periodic boundary conditions were used in the simulation.
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Figure 12: The variation of the generalized minimum gradient £, with n. Note the asymp-
totic approach to p. and 1 — p. as n approaches co and —co, respectively.
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Figure 13: Alternative pathways that can be taken by the MTP to advance by one step in
the z direction (here from right-to-left). The possibilities of two steps (a), three steps (b),
four steps (c), and five steps (d) and (e), are indicated. Note the backtracking (“overhang”)

in Figure (e).
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Figure 14: The two alternative pathways (solid and dashed lines, respectively) that can lead
to the opening of bond ¢7 connecting adjacent sites 7 and j.
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Figure 15: Representation of the open paths as the applied potential increases at different
stages: (a) MTP, (b) one-third, (c) two-thirds, and (d) three-thirds of all possible open
paths, for a 100 x 100 lattice.
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Figure 16: The fraction of open bonds as a function of the applied gradient for n = 1 from
simulations in a 40 x 40 x 40 lattice.
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Figure 17: Snapshot of unstable IPM with trapping, from simulations in a 100 x 100 lattice.
The pattern is a SAW constrained to occur on the LHS of the rightmost boundary.
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Figure 18: Schematic of the various alternative minimum threshold paths from site A to the
RHS boundary. Path £ is the MTP of IPM, while £* is the hypothetical alternative.
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6. OPTIMIZATION OF FLUID FRONT DYNAMICS IN POROUS MEDIA
USING RATE CONTROL: EQUAL MOBILITY FLUIDS

B. Sudaryanto and Y. C. Yortsos

ABSTRACT

In applications involving the injection of a fluid in a porous medium to displace another
fluid, 2 main objective is the maximization of the displacement efficiency. For a fixed arrange-
ment of injection and production points (sources and sinks), such optimization is possible by
controling the injection rate policy. Despite its practical relevance, however, this aspect has
received scant attention in the literature. In this paper, we provide a fundamental approach
based on optimal control theory, for the case when the fluids are miscible, of equal viscosity
and in the absence of dispersion and gravity effects. Both homogeneous and heterogeneous
porous media are considered. From a fluid dynamics viewpoint, this a problem in the de-
formation of material lines in porous media, as a function of time-varying injection rates.
It is shown that the optimal injection policy that maximizes the displacement efficiency, at
the time of arrival of the injected fluid, is of the “bang-bang” type, in which the rates take
their extreme values in the range allowed. This result applies to both homogeneous and
heterogeneous media. Examples in simple geometries and for various constraints are shown,
illustrating the efficiency improvement over the conventional approach of constant rate in-
jection. In the heterogeneous case, the effect of the permeability heterogeneity, particularly
its spatial correlation structure, on diverting the flow paths, is analysed. It is shown that
“bang-bang” injection remains the optimal approach, compared to constant rate, particu-
larly if they were both designed under the assumption that the medium was homogeneous.
Experiments in a homogeneous Hele-Shaw cell are reported to test the theory.

INTRODUCTION

The injection of a fluid in a porous medium to displace another fluid (miscible or im-
miscible) initially in place is common to applications involving the recovery of subsurface
fluids (for example, in oil recovery or in environmental soil remediation). Injected fluids are
typically water, solvents, steam, etc., the initial fluid being oil or organic contaminants, in
the two applications mentioned. The displacement occurs by injection from various injection
wells (sources) and by production from a number of production wells (sinks). A variety of
patterns have been analyzed in classical works (e.g. Muskat!, Bear 2), several decades ago.
A typical example of relevance to our work, is shown in Figure 1 and involves two injection
wells and a production well in a bounded “reservoir”. In practice, the location of injection
and production wells is generally determined semi-empirically, based on a variety of geologic,
economic, and practical considerations.

In many applications, the main objective is the maximization of some measure of the
displacement efficiency (the recovery efficiency). Aspects of the optimization of displace-
ment processes in porous media have been studied before, notably by Ramirez and his
co-workers®~7, in the context of maximizing the profitability over a fixed time interval of
various Enhanced Oil Recovery (EOR) processes. In these, the important variable is the
volume of a (costly) component (e.g. surfactant, polymer) injected along with the fluid,
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which improves the microscopic (pore-level) displacement efficiency. There, the emphasis is
mostly on the physicochemical action of the injected fluid (for instance, on the reduction of
the interfacial tension) rather than on the dynamics of the flow itself. Typically, in those
studies, a pair of injection and production wells in a symmetric, homogeneous pattern were
considered.

However, in problems where the injected fluid composition is fixed and it is not a control
parameter (for example in water displacing oil), the only available control of the displacement
is the allocation of the injected fluid to the injection wells (and of the produced fluid to the
production wells). In general, this can be accomplished by varying the injection rates and/or
the injection (or production) intervals in individual wells. In the particular case of a 2-D
geometry of interest here, the wells can be considered as point sources and sinks, thus the
maximization of the displacement efficiency should be sought by optimizing well injection
rates. This fundamental problem has not been systematically addressed before (although
various attempts have been made, e.g. see Asheim® and Virnovsky®). The conventional
approach has been to design symmetric well patterns, and allocate injection rates equally to
all wells. This practice relies on the premise that the permeability field is homogeneous, an
assumption which is rarely true. Indeed, in heterogeneous porous media, the flow streamlines
do not necessarily have the symmetry of the well pattern, even at constant injection rates.
Furthermore, injection at constant and equally partitioned rates, which is 2 common practice,
has not been shown to be the optimal policy, certainly not in the absence of well symmetry,
even for a homogeneous porous medium.

To make progress, we elected to study in this paper a “first-order” problem, namely
equal-viscosity, first-contact miscible displacement, in two dimensions and in the absence of
dispersion or gravity. In the case of a homogeneous permeability field, this, then, becomes
a problem of control of fluid fronts under conditions of potential flow. As will be shown
below. this problem is amenable to a non-linear dynamics description. For heterogeneous
permeability fields, a similar although computationally more complex, description applies.
Accounting for the presence of dispersion, of immiscible fluids and of unequal viscosities,
which are all neglected here, introduces additional complexities. For example, when the
fluids are immisicible, issues of relative permeabilities arise. While in the case of a less
viscous fluid displacing a more viscous one, viscous fingering instabilities will occur!®—13,
requiring a generally cumbersome numerical approach, isntead of the simpler potential flow
description used here. Some of these more general problems are discussed in a companion
paper'?. which relies, however, on the present approach for their solution.

From a fluid dynamics point of view, the problem under consideration is the evolution of
displacement fronts in porous media, as a function of time-varying injection rates at point
sources. In essense, this is a study of the deformation (map) of initial material lines subject to
a time-varying flow field (for example, as described in Ottino®®). Given that 2-D steady-state
potential flow is integrable!®, it is the time dependence of the injection rates at discrete points
(sources and sinks) that potentially introduces interesting aspects. The general problem of
the deformation of arbitrary fluid volumes in various porous media flow fields is discussed
elsewhere!® and will form the subject of a future article. In this paper, the focus is on how to
control the displacement fronts to optimize a certain measure of the displacement. For the
latter, we select the displacement efficiency at the time when the injected fluid first arrives
(“breaks through”) at the production well. Delaying as much as possible the arrival of the
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injected fluid at the production well is a desirable objective in many recovery processes. We
note that interesting work on the arrival time statistics in heterogeneous porous media has
been recently carried out!?.

Thus, we consider the equal-mobility, miscible displacement of incompressible fluids in
a 2-D geometry in the absence of dispersion and gravity. For the sake of presentation, we
will refer to the injected fluid as “water” and to the displaced fluid as “oil”, without any
particular physicochemical meaning attached to this designation, however. The paper is
organized in two sections, as follows: First, we formulate the control problem in a homoge-
neous permeability field, involving multiple injectors and one producer. We apply an optimal
control methodology and show that the optimal control policy is of the “bang-bang” type,
namely, the control parameter, which here is the injection rate at individual point sources,
takes only its extreme values (maximum or minimum) in the range in which they are con-
strained. Numerical experiments are subsequently conducted to illustrate the applicability
of the methodology and to carry out a sensitivity study. Then, we report on physical flow
experiments conducted in a Hele-Shaw cell to test the theoretical predictions. In the second
section of the paper, we present a generalization of the approach to heterogeneous reservoirs,
always under conditions of equal mobility, and conduct a sensitivity study of the effect of
heterogeneity on the optimal injection policy.

HOMOGENEOUS POROUS MEDIA

1. Formulation

Under the previous assumptions of equal mobility, incompressible miscible fluids, and in
the absence of dispersion and gravity effects, the displacement in homogeneous porous media
is governed by potential flow

V20 =0 (1)

where @ is a normalized flow potential. The solution of (1) for a multiple-well, multiple-rate
problem in 2-D reads, in appropriate dimensionless notation, as

Nr
®(z,y) ~ — j_; @(®)ln [(z — 2w)? + (¥ — yu1)?] 2)

where N7 is the total number of wells, g; is the flow rate of well [ (g; > 0 for injection and
g < 0 for production), and the pair (1, Yuwi) denotes the coordinates of well I. Throughout
the paper, sources are not allowed to become sinks, and vice versa. We add that in the case
of bounded symmetric reservoirs, N7 also includes the image wells present as a result of the
method of superposition.

From equation (2) and the use of Darcy’s law, the flow velocities read, in appropriate
dimensionless notation

Nrp
_ T — Tyl
Vg = Z:ql(t) (.'ZI _ xwl)g + (y —_ ywl)2 (3)
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and

& Y = Yul
Uy = (2 = 4

Yy gq() (z_xwl)2+(y—ywl)2 ( )
Equations (3)-(4) can also be used to define fluid fronts by tracking front particles emanating
from the various sources. With this description, the optimization problem can be formulated
as an optimal control problem of a non-linear dynamical system. Define as state variables
the coordinates (zr,yx) of the (theoretically infinite) particles at the fronts. Then, the state
equations are

. Nz iL‘k(t) — Tl
mk‘Z?“”[@uﬂ—x@V+@Aﬂ~ywﬁ] )

and

qu [ Yr(t) — Yuwl ] (6)

(@(8) = 2wt)® + (yk() — yut)?

where dots denote dlfferentlatlon with respect to time, subject to the initial conditions
z£(0) = z and yx(0) = y2. The latter are determined by specifying the particular source
and the particular streamline angle from which the particle emanated (recall the locally
radial flow near a source or a sink).

In this dynamical system, the control variables are the time-varying injection rates ¢;(2).
These are subject to various constraints. For example, consider the case in which there is a
single sink, denoted by subscript 1, and Nw — 1 sources. A plausible constraint is to assume
that the overall injection rate is constant, and equal to 1, in the dimensionless notation, in
which case we have the conditions

Nw
ql(t)=_1 ) qu(t)zl ) Oﬁql(t)§1 , 1=2,---Nw (7)

Other constraints are also possible, for example on the maximum possible rates in individual
wells (see below and Ref. [16]). Now, for the case of incompressible fluids at a constant-
overall injection rate, maximizing the efficiency at breakthrough is equivalent to maximizing
the breakthrough (arrival) time, ¢;. In this case, therefore, the performance index J to be
maximized is

T =1s (8)

The arrival time is determined from the solution of the state equations. In the numerical
approximation to be used below, the front will be approximated by a finite number Ng, of
particles. Because of the singularity of flow near the sink, the following terminal condition
will be imposed

Ns

(ts) =TT (loa(ty) — 21 + [uelts) — gull? — &) = 0 (9)

k=1
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where € < 1 is a normalized source “radius”. Thus, breakthrough is defined when condition
(9) is satisfied for the first time, which occurs when the fastest particle, under the particular
injection rate policy, first arrives at the sink.

In summary, the optimal control problem to be solved can be stated as follows: Find
the admissible control parameters gi(t), | = 2,---, Nw, satisfying the constraints given by
(7 which maximize the performance index (8), subJect to the state equations (5)-(6) and
the stopping criterion (9). This problem can be addressed by using a standard control
methodology*®.

For this, we introduce the Hamiltonian,

Tu)? + (Y£(t) — yut)?

Ng Np Tk — Tyl
H= Z Azk(t) [Z a(t) [ (zx(t) — Y H

yk(t) — Yuwl ]
+ ) At t 10
Z . [Zq’( ) [(z © = o) + D) — vu? (10)
and adjoin the state equations (5)-(6) and the terminal condition (9) to the objective function
(8), using the vector Lagrange multipliers A;x(t) and Ayx(¢) and the scalar Lagrange multiplier
€. This leads to the augmented objective function

ty Ns
TJa=1t;+&b +/0 H— > (Aak(t)Er + Ar()ge) | di (11)
k=1
from which the Lagrange multipliers are determined
. OH . OH 1 oY . 0y .
’\”k‘_aa:k Ak = B and {7 = [1:2—.31 (83: k-i-a Yk t (12)
f

subject to the boundary conditions

0
) =€ (52)  and date) =€ (22) (13)
t s

A computational procedure for the maximization of (11) will be described shortly. Before
we proceed, however, we make a key observation: We note that the state equations (5)-
(6) are linear with respect to the control parameters ¢(¢). Under these conditions, we can
apply Pontryagin’s Maximum Principle (PMP), which states that the optimal variable g}

is determined from the value of the switch function a_u as follows (e.g. see Bryson and

Ho®®): ¢ = gnin(= 0) if au < 0; ¢ = Gmaz(=1) if 87" > 0; while ¢ is undetermined if

%;"—‘ = 0. Therefore, if the values of the switch functlons are non-zero, except possibly at a

finite number of points, the optimal (non-singular) control is of the “bang-bang” type, and
the control variables take their extreme values only (which in the present case are 0 and 1).
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2. Computational Procedure

Because of the bang-bang control nature of the problem, therefore, we only need to
specify the switch times and the control value of the first bang arc. The problem reduces
into finding the optimum location of the switch times. Various algorithms'®~?2 have been
proposed for this purpose. In this study, we will use the STO (switching time optimization)
algorithm, developed by Meier and Bryson?2, which is based on a first-order gradient method
and consists of the following steps:

1. Obtain the initial switch time and the control value of the first-bang arc (see further
below).

2. Using the initial control policy from step (1), integrate the state equations (5) and (6)
forward in time until the stopping criterion (9) is satisfied. Record all state variables ()
and yx(¢) (k =1,--- Ng) and the value of the objective function.

3. Calculate the Lagrange multipliers Azk(t), Ayk(?) (K = 1,--- Ng) and ¢ from the co-
state equations (12) by integrating backward in time, starting from the terminal time ¢y and
using the boundary condition (13).

4. Calculate the improvement in the switch time, dt;,, by using the expression

wy [OH
dt, = 20 (922 14
, qu<6qz)t,m (14

where t;,, is the m-th switch time of the control variable ¢, wy is the diagonal element of
a positive definite weight matrix W (see Ref. [16] for more details), and Ag = q(tm) —
qi(tmi + dtmy) is here equal to Ag = 1.

4. Repeat steps (2)-(4) using the new switch times obtained from step (4) until the
change in the objective function is less than a prescribed small positive number.

To get started, the STO algorithm requires an initial guess of switch times (step (1)),
which can be obtained by solving a modified non-bang-bang problem that approximates
the original bang-bang problem?2. In the modified problem, a term that approximates the
control bounds must be added to the performance index. This term penalizes the deviation
of the controls away from the bounds. Using the above gradient procedure (see ref. [16]
for more details), the control parameters of the modified problem are driven toward their
bounds to maximize the performance index J. Results are presented below.

3. Numerical Results

All numerical results to be shown in this subsection correspond to a three-well system (two
injectors and one producer) in a rectangular, bounded reservoir (Fig. 1). In the solution of
the problem, we used the method of images by superposing image wells to satisfy the no-flow
conditions at the boundaries (for example, see Refs. [1]-[2]). A total of seventy-two image
wells was found to be numerically sufficient for this purpose. We note that a similar approach
can also be implemented for arbitrary reservoir geometries'®. The numerical experiments
were typically conducted by fixing the positions of wells A and C, and of the angle « = ACB
and placing well B at variable positions. Of course, various other geometrical configurations
are also possible. The following general results were found: In all cases under the constraint
of constant-overall injection rate, only one injector (source) is active at any given time.
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(However, this is not necessarily the case for different constraints, as will be shown later.)
The optimal injection policy is bang-bang with one switch time only: it consists of injecting
first from the source well located “farther” away from the sink (well A in Fig. 1), up to
the optimal switch time, at which injection switches to the injector located “nearest” to the
producer (well B in Fig. 1). Furthermore, the optimal switch time was found to be such
that the fronts from both injectors arrive simultaneously at the producer.

Snapshots of the displacement fronts under the optimal injection policy are shown in
Fig. 1. Before the switch time, only injection from the point source A takes place (Fig.
1b). Following the switch, injection terminates at source A and commences at source B.
The particles originating from source A are now subject to the flow field created by the
source at point B, and they are displaced in the direction of the sink C (Fig. 1c). During
this process, part of the front emanating from source A recedes, although the total volume
it encloses remains constant, due to incompressibility. In the present problem, where there
is no hysteresis in the flow properties, the receding of the front is not an issue of concern.
However, it is likely to be so in the case of immiscible displacements, where flow properties,
for example relative permeabilities and capillary pressure, are indeed hysteretic?®. Upon
breakthrough (Fig. 1d) both fronts arrive simultaneously at the sink.

To illustrate the advantage of the bang-bang control, we compared its displacement
efficiency to the conventional case, where injection rates are constant. In particular, we
considered the case, where the partition of the (constant) rates between the well is such that
it maximizes the displacement efficiency. For most geometries, these rates are such that
breakthrough in well C occurs simultaneously from both fronts (however, this not always
true, as shown below). We will refer to this optimal case as constant-rate injection. Fig. 2
shows the fronts at breakthrough for the two different policies. The two displacements have
different features. The swept area due to injection from well B in the constant rate case is
much smaller than that for the bang-bang case. Because of its proximity to the sink, well
B cannot accept a high injection rate, which will lead to early breakthrough. This is not so
for the bang-bang case, where well B is put into action after some time has elapsed, thus it
can accomodate a high (in fact, the highest) injection rate without the risk of a premature
breakthrough. In the constant rate case, each source establishes its own “drainage” area, the
shape of which is determined from the strength of the sources and the competition with other
sources. The streamlines of the particles emanating from a given source, are thus restricted
to this particular area, due to the flow fields from the other sources. In the bang-bang case,
the fronts are not subject to this confinement. As shown previously, some of the streamlines
emanating from the first well A will bend backwards, when injection from well B commences,
and will eventually be diverted towards the sink C. This allows for a better displacement
from well B and leads overall to a better displacement efficiency.

To assess quantitatively the effectiveness of the bang-bang policy, we compared the effi-
ciency at breakthrough with that from the constant-rate injection. Fig. 3 shows a plot of
the normalized breakthrough time as a function of the ratio of the distances between the
two wells (always for a constant angle AC'B = 45°). For all values of the latter, bang-bang
injection gives a better displacement efficiency at breakthrough than the constant-rate case.
The efficiency improvement depends on the distance ratio, with a maximum that in Fig.
3 can reach 13.7%, when the distance ratio is about 0.6. This improvement, although not
very dramatic, is non trivial, given that it is accomplished only by flow rate control. Fig. 3
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shows that the efficiency depends on the geometric arrangement of the wells, which essen-
tially dictates the streamline lengths. We note that in heterogeneous fields, the efficiency
would additionally depend on the permeability structure, as possible spatial correlations will
lead to channels and affect the streamlines (see Section II below). The switch time was
found to decrease monotonically, from a value of 1 to a value of 0.342, as the distance ratio
increased. It is worth noting, that for the constant-rate injection, optimal efficiency is not
always associated with simultaneous injection from both wells. Thus, for a geometry with
a distance ratio below approximately 0.6, injection from the closest injector (well B) does
not improve the efficiency at breakthrough. Rather, the efficiency is maximized by injecting
only from the farthest injector (well A, Fig. 3). Similar results were also found for other
well arrangements and reservoir geometries!®.

The bang-bang condition of the simultaneous arrival at the sink for optimal displacement
efficiency can be interpreted readily. Indeed, consider a bang-bang policy, S, in which when
the front from well B first arrives in well C, the front from well A is at some finite distance
away and duringa finite time before breakthrough, injection occurs only from well B. We
will show that S is not the optimal injection policy. Indeed, given that the flow always
remains potential, breakthrough of the front from well B will occur from particles moving
along the diagonal BC, which is the fastest trajectory, when injection occurs only from well
B, as assumed in this policy. Now, let us consider a time at a small time interval ¢, before
breakthrough, suitably chosen, and apply the different policy S, consisting of interrupting
injection from well B and recommencing injection from well A in that time interval. It is
clear that in this period of time, there will be no breakthrough of either front: Particles
emanating from well B will now travel along curved, rather than straight streamlines, hence
will not reach well C in time ¢, while particles emanating from well A will not be sufficiently
close to well C, under suitably small ¢, in order to break through. Therefore, neither of
these particles will reach breakthrough in this time interval, and policy &’ will lead to a
higher displacement efficiency, contrary to our initial assertion. It follows that policy S is
not optimal. A similar argument holds if we were to reverse the roles of A and B, thus
leading to the simultaneous arrival as a condition for an optimal bang-bang displacement.

From the above it can also be shown that the displacement efficiency of the bang-bang
policy exceeds that of the two limiting cases, where only of one of the two wells is active.
Indeed, the bang-bang efficiency will be greater than that due to well B only, since by
construction the bang-bang policy includes, as a subset, injection until breakthrough from
well B (this constitutes the second part of the policy, for example see Fig. 1). Proving that
it is also greater than that from injection from well A only, follows by applying argument in
the previous paragraph, in which the roles of wells Aand B are reversed. In this sense, the
efficiency of the bang-bang policy satisfies a “triangle inequality”.

4. Constraint on Injectivity

In the above, the overall rate was constrained to be constant. In certain practical cases,
however, it is possible that the individual injection rates may not exceed a maximum value,
which depends on the local conditions of the individual well. For example, we may have the
constraint
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0 S q1(t) S di;maz l= 2,"'aNW (15)

where g mq. may not necessarily be the same for every I. Under this constraint, the optimal
control formalism remains the same as before, except for the performance index, which now
becomes

ty (Nw

7= (Z q,(t)) dt (16)
0 =2

Despite the different constraints, the linearity to the injection rates still remains, and the

optimal injection policy is again predicted to be of the bang-bang type. The computational

method for the solution of this problem is similar to the previous and details can be found

in Sudaryanto?®.

A number of numerical experiments were conducted for various constraints of the type
(15) and for geometries similar to Fig. 1. In all cases, the optimal injection policy was
found to have one switch time, as before. However, now there is the possibility that more
than one injection wells are active simultaneously. Indeed, the optimal injection policy was
found to consist of the following: (a) constant injection from the farthest injector and at
its maximum rate throughout the process until breakthrough; and (b) no injection from the
nearest injector until the switch time, after which injection commences at the maximum
injection rate for that well, until breakthrough. Here, the farthest injector was defined as
the one which gives longer breakthrough times when injection is from that well only and at
its maximum rate. Snapshots illustrating front movements for bang-bang injection under the
injectivity constraints 0 < g4 < 0.5 and 0 < gg < 1, are shown in Fig. 4. Commencement
of injection at well B, after a certain time has elapsed (Fig. 4c), causes the streamlines
from well A to bend towards well C, as in the case of Fig. 1. A comparison between
the displacement efficiency at breakthrough between bang-bang and constant-rate injection
policies is shown in Fig. 5. Here, because the overall rates are not constant, there is no
equivalence between breakthrough times and displacement efficiency, however. The results
show that bang-bang injection leads to both a better efficiency and a shorter breakthrough
time, compared to constant-rate injection. Namely, here there is the additional benefit of
faster recovery, associated with the bang-bang injection. The improvement in efficiency is
similar to that for the constant overall rate constraint (Fig. 3). However, the reduction in
breakthrough time can be significant and approaches 25%, in the best case, for the conditions
of Fig. 5. This example shows that the injectivity constraints can play important and
unexpected roles in the maximization of the displacement efficiency.

5. Experimental Results

To test the theoretical predictions, flow experiments in a Hele-Shaw cell were conducted.
Although lacking the pore microstructure of actual porous media, Hele-Shaw cells are ex-
cellent experimental devices for the visualization of 2-D potential flows, under single-phase
conditions. The Hele-Shaw cell consisted of two parallel 3/8 inch-thick glass plates of dimen-
sions 24 inches x 18 inches separated by 1 inch-wide flat rubber strips placed along the edges
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of the cell that serve as a spacer (to maintain the gap thickness) and as a gasket (to seal the
edges). The rubber strips have a thickness of 0.08 cm. Experiments were also conducted for
a modified geometry, in which a large-scale flow barrier was added to the cell (see section II
below). Three holes with a diameter of 1 cm were drilled in the bottom glass plate, two of
which served as injection wells and the third as the production well. The injection wells were
connected to two peristaltic (Masterflex) pumps, while the production well was connected to
the ambient environment. The pumps were variable-flow computerized with easy-load pump
heads, and were connected to a PC,through which the variable flow rates were programmed
and controlled according to the desired injection policy. In the experiments, dyed (methylene
blue) water was injected to displace water originally in place, at a constant overall rate of
20 cc/min. A video camera mounted vertically above the cell captured the front movement.
Injection policies corresponding to the optimal control policy as obtained above, as well as
to constant rate injection were used. The schematic of the experimental set-up is shown in
Fig. 6.

Snapshots of the displacement fronts under the optimal bang-bang policy are shown in
Fig. 7. As discussed above, injection starts first from the more distant well, then switches at
an optimal time to injection from the well nearest to the producer. Following the switch, the
fluid originating from the more distant well is shown to be driven towards the production
well, as expected theoretically. During this process, part of the front actually recedes, as
predicted. The two fronts break through almost (but not exactly) at the same time. We
believe that the reason for the slight discrepancy in front arrival is dispersion, which was not
included in the theory. To estimate the effect of dispersion we used the standard Taylor-Aris
expression for the dispersion coefficient :

8u2h?
945D,,
where 2h = 0.08 cm is the gap between the plates and D,, =~ 107° cm?/sec is the molecular
diffusivity. In rectilinear flows, the Peclet number is maximized at a specific value of the
injection rate. Thus, operating at the smallest possible dispersion is possible by optimizing
the overall injection rate. In our experiments, however, the displacement is not rectilinear,
certainly not everywhere, and the Peclet number is spatially variable. To minimize disper-
sion, the experimental injection rate was chosen to be as close as possible to an optimal rate,
subject, however, to the resolution constraints of the pumps, which did not allow for too
small velocities. To provide a rough estimate of D the velocity was estimated as u = 0.12
cm/sec, away from the wells. This value will lead to the estimate D = 0.02 cm?/sec, which
shows that dispersion cannot really be neglected (as it leads to spreading of the order of 1
inch for an experiment lasting for 300 seconds).

Fig. 8 shows snapshots of the displacement fronts at breakthrough from two different
flow experiments, one under the optimal bang-bang policy and another under constant-rate
injection. For comparison, the results of the corresponding analytical approach, which is free
of dispersion, are also shown. The two results are similar, but not identical. The area swept
by the injected fluid at breakthrough in the physical experiments is slightly smaller and less
compact compared to the corresponding area from the numerical experiments. We attribute
this difference to the dispersion in the Hele-Shaw cell. Nonetheless, the efficiency was found
to be higher under the optimal bang-bang policy than for the constant rate case. For the

D=D,+ (17)
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particular geometrical arrangement of Fig. 7, the ratio of the breakthrough time under bang-
bang injection to that under constant-rate injection is predicted from the calculation to be
1.03. In fact, the result from the physical experiment is estimated to be slightly larger,
1.04, indicating that even in the presence of dispersion, the bang-bang policy is better than
constant rate injection. (The relatively small improvement is here due to the particular
geometrical arrangement considered. As shown in Fig. 3, the improvement in efficiency
can reach larger values, depending on the geometry.) Additional experiments are discussed
below in Section II.

HETEROGENEOUS POROUS MEDIA

Corsider, next, the optimization problem in a heterogeneous medium. It is well known
that geological porous media exhibit a great degree of heterogeneity in permeability??, the
consideration of which is paramount for realistic predictions. Typically, the permeability is
expressed in terms of a stochastic function in space, with various assumed forms of spatial
correlation. A popular description is in terms of self-affine noise of the fBm type®®=2® (frac-
tional Brownian motion), where correlations grow with distance and the correlation length
is unbounded. In such cases, the texture of the permeability field is characterized by its
Hurst exponent H, 0 < H < 1, larger values of H corresponding to a smoother field?.
For example, H = 0.5 corresponds to the classical Brownian motion. Examples of random
and correlated permeability fields of this type are shown in Fig. 9. Layered reservoirs are
also common. As in many applications involving geologic media, however, full knowledge
of the heterogeneity structure is not available in the typical case. As a result, one has to
rely on a statistical description, in which a number of different permeability realizations are
conducted, and from which results on average behavior can be extracted.

In this section, we will consider the optimal control problem for heterogeneous reservoirs
in a miscible displacement with equal mobilities and in the absence of dispersion, as above.
For simplicity, only the case with a constant overall injection rate constraint will be consid-
ered, other constraints being readily implemented. Now, as in the case of a homogeneous
reservoir at unit mobility ratio, the state equations are linear with respect to the injection
rates. Since the performance index to be maximized is also linear, then the non-singular
optimal control is again of the bang-bang type.

However, in the heterogeneous case, we cannot take advantage of the potential flow for-
malism. Nonetheless, and because of the unit mobility ratio assumption, the displacement
can still be expressed as a superposition of the response of individual wells. This facilitates
considerably the problem description and its computation, as shown below. Unlike poten-
tial flow. where the well responses can be obtained analytically, however, displacements in
heterogeneous reservoirs require a numerical solution.

1. Formulation
For simplicity, we will consider again a problem consisting of Ny — 1 injection wells of

varying injection rates, and of one production well. Now, the flow field is obtained by solving
the flow equations in a heterogeneous medium, namely we can write
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V-k(x)Vp =0 (18)

and

v(x,t) = —k(x)Vp (19)

with appropriate boundary conditions. Because the time dependence enters only through
the boundary conditions, however, the velocity field can be also expressed in terms of the
superposition of Ny — 1 two-well responses, namely

Nw
v(x,t) = ; a(t)vi(x) (20)

where v(x) is the velocity field induced only by a two-well system, involving injection at
unit strenght in well [ and production in well 1. Equation (20) shows that the variation in
time is the superposition of the responses of individual well pairs, the spatial variation of
which is independent of time and needs to be computed only once. This facilitates greatly the
computation of the optimal control problem, which involves repeated iterations. Thus, the
non-linear dynamical description derived for the homogeneous system remains valid, except
that now the spatial dependence must be computed numerically, in general.

To proceed, we follow the same approach as in Section I, subject to the following changes.
In equations, such as (3) for example, the sum must be rearranged to read

b= gm(t) e ] (21)

— )2+ (Y — Yut)? (€ — Zu1)? + (¥ — Y1 )?

Thus, the approach to be followed is identical, if the substitution is made

11 Nw [ T — Ty T — Ty ]

= z; «) (@ —2u)’ + (U~ 4u)® (&= Tu1)® + (¥ — yu1)? (22)
In this way, the optimal control formalism becomes identical for the two problems. Cal-
culation details can be found in Sudaryanto'®. Here, we will briefly note the following: In
the numerical solution, we used a block-centered finite-differences grid, the solution being
computed at the center of each grid block. Harmonic averaging was used for the spatially
varying permeabilities. The resulting matrix for the pressure was solved with an LSOR
method. In tracking the front, expressions for the velocity coefficients in points other than
the grid-block centers are often needed. These were obtained using multilinear interpolation
from the values known at the four corner points of the square, within which the front resides
at any given time. Likewise, the evolution of the Lagrange multipliers was obtained by solv-
ing numerically the corresponding equations, which now also involve evaluating numerically
the spatial derivatives of v}! and vi! (I = 2,--- Nw). These were computed using three-point
finite-differences. In some cases, streamtube simulation was also used. The optimal control
computation was similar to Section I.
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2. Numerical Results

Various forms of heterogeity were used in the numerical experiments, including a large-
scale flow barrier, a layered medium, and random and spatially correlated permeabilities of
the fBm type.

In the first example, we considered a large-scale flow barrier intended to model the
presence of an impermeable fault. The numerical results show that, in all cases, the optimal
injection policy is bang-bang with one switch time. As before, the optimal switch time
corresponds to the simultaneous arrival of the displacement fronts from the two injectors at
the producer. Fig. 10 shows snapshots of the front movement under the optimal bang-bang
injection policy. The particle tracking method used gives the expected results. The flow
barrier impedes the flow towards the sink, while following the switch in injection, the front
from well A is re-directed towards the sink. These results agree well with the results of flow
experiments in the Hele-Shaw cell to be discussed below. Fig. 11 shows a comparison of the
displacement efficiency at breakthrough under bang-bang and constant-rate injection policy.
As expected, bang-bang injection outperforms constant-rate injection, with a maximum
efficiency improvement of 13.8% in the particular geometry considered.

In the second example, we considered displacement in a layered reservoir, consisting
of two regions with constant but different permeability values, k; and k; (e.g. see Fig.
12a, where k; = 0.25k;). The numerical results show that, in most cases, the optimal
injection policy has one switch time. However, for some geometries, two switch times are also
possible. In all cases, the optimal policy involves steering the displacement fronts towards
the low permeability region, first, to delay breakthrough as much as possible. Fig. 12 shows
snapshots of the front movement under such a bang-bang policy, where two switch times
are involved, corresponding right after the snapshots in Fig. 12b and 12c, respectively. The
response of the streamlines after the switch in injection is apparent in the figure. As before,
bang-bang injection gives better displacement efficiency at breakthrough than constant-rate
injection for all distance ratio values tested!®.

The last example of reservoir heterogeneity corresponds to random and spatially corre-
lated fields. A log-normal permeability distribution with a modest permeability contrast of
four (kmaz = 4kmin) was studied. The uncorrelated field was generated by randomly assign-
ing values from a log-normal distribution. The spatially correlated fields were constructed
using the successive random addition algorithm?®?°, In the numerical experiments, values
of the Hurst exponent equal to 0.2, 0.5, and 0.8 were used. For each case, a total of 100
different realizations were generated. The results showed that the optimal injection policy is
always bang-bang with one switch time. Snapshots of the front movement under the optimal
bang-bang policy are shown in Fig. 13 for a particular realization of the uncorrelated case.
An example of the correlated case is given in Fig. 14, where displacement fronts at break-
through under bang-bang and constant-rate injection policy, and for a particular realization
of the permeability field, are shown. The results show that bang-bang injection policy gives
better displacement efficiency at breakthrough than constant-rate injection policy. Figures
similar to Fig. 3 can be constructed for all these cases, but are not shown here for the sake
of brevity. For example, for the particular realization of Fig. 13, the maximum efficiency
improvement is in the range of 16%.

We must point out, that in addition to its dependence on well geometry, the improvement
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in efficiency depends on the particular realization of permeability field and the exponent H,
however. Fig. 15 shows the efficiency improvement for a particular well geometry (a three-
well system with distance ratio = 0.707 and angle a= 45°), for different realizations of
the permeability field and different H exponents. The range of efficiency improvement is
essentially the same for each model of spatial correlation, almost independent of the value
of the Hurst exponent. However, the efficiency improvement varies significantly from one
realization to another, reflecting the different spatial arrangement of the flow paths. Another
illustration of this effect is the variation of the (normalized) switch time of the bang-bang
policy (Fig. 16). This time is shown to vary in a relatively narrow range (from about 0.85
to 1.05) for the case of uncorrelated permeability fields. As the spatial correlation increases,
however, the range of variation increases significantly (from about 0.7 to 1.3) and it has a
weak increasing dependence on H.

3. A Sensitivity Study

To complete the study of heterogeneity, we considered a sensitivity study, in which we
posed the question what would be the reduction in efficiency, if the heterogeneity of the
medium were ignored in the designing of the displacement process. To address this question,
we compared the displacement efficiency at breakthrough from the application of a bang-
bang injection policy, which is optimal for the assumed homogeneous problem, to that from
constant-rate injection policy which is also optimal for the same assumed homogeneous
reservoir. Answering this question will essentially dictate whether the advantage of bang-
bang over constant rate optimal injection carries over to heterogeneous systems, even though
they were both designed on the assumption that the reservoir is homogeneous. Numerical
experiments were conducted for one particular well geometry, namely a three- well system
with distance ratio = 0.707 and an angle of 45°. The permeability of the homogeneous
medium was taken equal to the mean value of the heterogeneous field. For the heterogeneous
problem we considered the previous (modestly heterogeneous) models.

The results are shown in Fig. 17. In almost all cases (the two exceptions in the random
case are probably due to numerical error), bang-bang injection gives a better displacement
efficiency at breakthrough than constant-rate, even though it was designed on the assumption
of a homogeneous reservoir. On average, the improvement and its variance increase as the
spatial correlation of the permeability becomes stronger. Thus, the benefits of bang-bang
injection carry over (even more accentuated) to the heterogeneous case. In assessing these
results one should also note that the permeability contrast was taken to be relatively narrow
(only a factor of 4). In many realistic situations, permeability contrasts of much larger
magnitude. reaching several orders of magnitude, are not uncommon. Under such conditions,
we expect that optimal bang-bang policies will offer additional quantitative improvement.

4. Experiments

Experiments corresponding to the geometry of the first example in the previous subsection
were also carried out. We used the previous Hele-Shaw cell with a large-scale flow barrier
(Fig. 18), put in place using a 4 inch x 1 inch rubber strip between the glass plates. Shown
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in Fig. 18 are snapshots of the front movement under the optimal bang-bang injection policy
computed as described above. The corresponding numerical results were given in Fig. 10
and show very similar features. By appropriately switching the injection rates, both fronts
are steered towards the production well, in which they arrive at almost the same time as
predicted (the slight discrepancy due again to dispersion). The difference with the constant
injection rate case (where the rates were chosen to optimize the displacement efficiency) is
shown in Fig. 19. The final configurations are different, with more displacement due to
injection from the nearest well, in the bang-bang case. The improvement in the efficiency
ratio between bang-bang and constant rate policies was estimated to be 1.06 in the physical
flow experiments, compared to a predicted value of 1.05. As with the previous case, this
slight difference is probably due to the presence of dispersion in the physical experiment.

CONCLUSIONS

In this paper, the problem of the control of flows, and more specifically of displace-
ment fronts, in porous media by controlling the injection rates at various point sources, was
addressed. We presented an approach based on optimal control theory to maximize the
displacement efficiency at breakthrough in 2-D miscible displacements, when the mobilities
of the two fluids are the same, and effects of gravity and dispersion are negligible. The ap-
proach relies on formulating the problem as a non-linear dynamics problem for the particles
that define the front. In the case of homogeneous media, this formulation is analytic. In the
case of heterogeneous media, we used a superposition approach to separate time and spatial
dependences, which substantially reduces the computational requirements.

It was found that the non-singular optimal control policy is of the bang-bang type,
namely a policy in which any given well operates at any time at the extreme limits of its
injection rate. Then, the problem becomes one of determining the optimal switch times
for each well. Depending on the problem, multiple switch times are possible, although
most examples shown correspond to one switch time only. Numerical results showed that
this policy leads to an improved displacement efficiency at breakthrough, compared to the
case of constant rate injection. The improvement is based on the underlying assumption that
miscible flows are not direction-dependent, hence displacement fronts emanating from a given
source, can recede and change direction reversibly, upon the activation of another source.
This assumption may not hold for immiscible flows where flow properties are hysteretic.
Sensitivity studies in heterogeneous media showed that the results depend sensitively on the
particular realization of the permeability field, as well as on the presence or absence of spatial
correlation. In particular, it was shown that on average, the advantages of the bang-bang
control remain, and in fact become greater, compared to constant-rate injection, even if one
were to design the optimal control process in the absence of information on the permeability
heterogeneity. Experimental results in a Hele-Shaw cell supported to a certain extent, the
theoretical findings.

The above theory can be extended to address problems of variable mobility and of immis-
cible displacements!®. Objctive functions other than the displacement efficiency at break-
through of the injected fluid, considered here, are amenable to a similar analysis. Likewise,
extensions to more complex problems, particularly in 3-D with partially active sources, etc.,
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are feasible. These problems capture important temporal and spatial dynamical features of
flows in porous media as a result of the time dependence of injection rates at various point
sources. In particular, they are related to the more general problem of the dynamics of
deformation of material lines in porous media flows, which is a subject of further research®®.

ACKNOWLEDGEMENTS

This research was also partly supported by PERTAMINA, the contributions of which is
gratefully acknowledged.

REFERENCES

M. Muskat, The Flow of Homogeneous Fluids through Porous Media, McGraw-Hill, New
York (1937).

2J. Bear, Dynamics of Fluids in Porous Media, Dover, New York (1988).

SW.F. Ramirez, Z. Fathi, and J.L. Cagnol, “Optimal injection policies for enhanced oil
recovery : Part 1- Theory and computational strategies,” SPE Journal, 328 (1984).

4Z. Fathi and W.F. Ramirez, “Optimal injection policies for enhanced oil recovery : Part 2-
Surfactant flooding,” SPE Journal, 333 (1984). _

5Z. Fathi and W.F. Ramirez, “Use of optimal control theory for computing optimal injection
policies for enhanced oil recovery,” Automatica 22 (1), 333 (1986).

67. Fathi and W.F. Ramirez, “Optimization of an enhanced oil recovery process with bound-
ary controls: a large-scale non-linear maximization,” Automatica 23 (3), 301 (1987).

"W.F. Ramirez, Application of Optimal Control Theory to Enhanced Qil Recovery, Elsevier,
Amsterdam (1987).

8H. Asheim, “Maximization of water sweep efficiency by controlling production and injection
rates,” paper SPE 18365 presented at the SPE European Petroleum Conference, London,
UK, Oct. 16-19, 1988.

®G.A. Virnovsky, “Waterflooding strategy design using optimal control theory,” paper pre-
sented at the 6th European IOR Symposium, Stavanger, Norway, May 21-23, 1991.

105.B. Gorell and G.M. Homsy, “A theory of the optimal policy of oil recovery by secondary
displacement processes,” SIAM J. Appl. Math. 43, 79 (1983).

1G.M. Homsy, “Viscous fingering in porous media,” Annu. Rev. Fluid Mech. 19, 271
(1987).

12y .C. Yortsos, “Instabilities in displacement processes in porous media,” J. Phys.: Condens.
Matter 2, SA 443 (1990).

13p. Petitjeans, C.-Y. Chen, E. Meiburg and T. Maxworthy, “Miscible quarter five-spot
displacements in a Hele-Shaw cell and the role of flow-induced dispersion,” Phys. Fluids 11,
1705 (1999).

14B. Sudaryanto and Y.C. Yortsos, “Optimization of Fluid Front Dynamics in Porous Media
Using Rate Control: II. Variable Mobility Fluids,” to be submitted.

13J.M. Ottino, The Kinematics of Mizing: Stretching, Chaos and Transport, Cambridge
University Press, Cambridge (1989).

156



16B. Sudaryanto, “Optimization of displacement efficiency of oil recovery in porous media
using optimal control theory,” Ph.D. Dissertation, University of Southern California (1998).
7N.V. Dokholyan, Y. Lee, S. Buldyrev, S. Havlin, P.R. King and H.E. Stanley, “Scaling of
the distribution of shortest paths in percolation,” J. Stat. Phys. 93, 603 (1998).

18A.E. Bryson, Jr. and Y.C. Ho, Applied Optimal Control: Optimization, Estimation, and
Control, Hemisphere, Washington, DC. (1975).

9K. Glashoff and E. Sachs, “On theoretical and numerical aspects of the bang-bang princi-
ple,” Numer. Math. 29, 93 (1977).

20R.R. Mohler, Nonlinear Systems, Volume II: Applications to Bilinear Control, Prentice
Hall, Englewood Cliffs, NJ (1991).

21C.Y. Kaya and J.L. Noakes, “Computations and time-optimal controls,” Optimal Control
Appl. Meth. 17, 171 (1996).

?2E.B. Meier and A.E. Bryson, Jr., “Efficient algorithm for time-optimal control of a two-link
manipulator”, J. Guid. Control Dyn. 13, 85 (1990).

28F.A L. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic Press, New
York (1992).

?4G. Dagan, Flow and Transport in Porous Formations, Springer-Verlag, Berlin (1989).
5T A. Hewett, “Fractal distributions of reservoir heterogeneity and their influence on fluid
transport”, paper SPE 15386 presented at 61st Annual Technical Conference and Exhibition
of SPE, New Orleans, LA Oct. 5-8, 1986.

?6]. Feder, Fractals, Plenum Press, New York (1988).

27A.-L. Barabasi and H.E. Stanley, Fractal Concepts in Surface Growth, Cambridge Univer-
sity Press, Cambridge (1995).

28C. Du, C. Satik and Y.C. Yortsos, “Percolation in a fractional Brownian motion lattice,”
AICHEJ 42, 2392 (1996).

29H.0. Peitgen and ‘D. Saupe, The Science of Fractal Images, Springer-Verlag, New York
(1988).

157

T, RIS

f
5%




(a) Constant-rate injection policy (b) Bang-bang injection policy

Figure 1: Snapshots of front movement under bang-bang injection policy. (a) At initial
time, (b) at time just before the injection switches from well A to well B, (c) at time when
injection is only through well B. [Note the bending of the trajectories following the switch
of injection from well-A to well-B], and (d) at breakthrough. (Potential flow, rectangular
reservoir, distance ratio equal to 0.7, angle equal to 45°.)
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Figure 2: Displacement fronts at breakthrough under constant-rate and bang-bang injection

policies. (Potential flow, rectangular reservoir, distance ratio equal to 0.7, angle equal to
45°.)
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Figure 3: Normalized breakthrough time under constant-rate and bang-bang injection poli-
cies as a function of the distance ratio. (Potential flow, rectangular reservoir, distance ratio
equal to 0.7, angle equal to 45°.)
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Figure 4: Snapshots of front movement under bang-bang injection policy. (a) At initial time,
(b) at time just before injection from well B started, (c) at time when both injectors A and
B are active, and (d) at breakthrough. (Potential flow, rectangular reservoir, distance ratio
equal to 0.7, angle equal to 45°, well injectivity constraint.)
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Figure 5: Efficiency at breakthrough (left), efficiency ratio and breakthrough time ratio
(right) as a function of the distance ratio. (Potential flow, rectangular reservoir, angle equal
to 45°, well injectivity constraint.)
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Figure 6: Schematic of the experimental set-up.
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Figure 7: Experimental snapshots of front movement under bang-bang injection policy. (2)
At initial time, (b) at time just before the injection switches from well A to well B, (c) at
time when injection is only through well B, and (d) at breakthrough. (Tracer displacement
in a rectangular Hele-Shaw cell, distance ratio equal to 0.884, angle equal to 45°.)
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(b) Bang-bang injection policy

(2) Constant-rate injection policy (b) Bang-bang injection policy

Figure 8: Comparison between experimental (top) and numerical results (bottom) for the
displacement patterns at breakthrough under constant-rate (left) and bang-bang (right)
injection.
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Figure 10: Snapshots of front movement under bang-bang injection policy. (a) At initial
time, (b) at time just before injection switches to well B, (c) at time when injection is only
through well B, and (d) at breakthrough. (Potential flow, rectangular reservoir with a flow
barrier, distance ratio equal to 0.884, angle equal to 45°.)
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Figure 11: Normalized breakthrough time under constant-rate and bang-bang injection pol-
icy as a function of the distance ratio. (Potential flow, rectangular reservoir with a flow
barrier, distance ratio equal to 0.884, angle equal to 45°.)
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Figure 12: Snapshots of front movement under bang-bang injection policy. Two switch times
are involved: (a) At initial time, (b) at time just before injection switches to well B, (c) at
time just before injection switches back from well B to well A, and (d) at breakthrough.
(Layered reservoir, k; = 0.25k,, distance ratio equal to 0.795, angle equal to 45°.)
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Figure 13: Snapshots of front movement under bang-bang injection policy. Two switch times
are involved: (a) At initial time, (b) at time just before injection switches to well B, (c) at
time when injection is only through well B, and (d) at breakthrough. (Random permeability
field, distance ratio equal to 0.707, angle equal to 45°.)
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(a) Constant-rate injection policy (b) Bang-bang injection policy

Figure 14: Displacement fronts at breakthrough under constant-rate and bang-bang injection
policies. (Correlated (fBm) permeability field with H = 0.8, distance ratio equal to 0.707,
angle equal to 45°.)
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Figure 16: Normalized optimal switch time for different realizations of uncorrelated and
correlated permeability fields.
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Figure 17: Efficiency improvement of bang-bang over constant-rate injection policy (both
injection policies are optimal for a homogeneous system) for different realizations of uncor-
related and correlated permeability fields.
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Figure 18: Experimental snapshots of front movement under bang-bang injection policy. (a)
At initial time, (b) at time just before the injection switches from well A to well B, (c) at
time when injection is only through well B, and (d) at breakthrough. (Tracer displacement

in a rectangular Hele-Shaw cell with a flow barrier, distance ratio equal to 0.884, angle equal
to 45°.)

175

TR, A e v
AP T e et > -







7. IDENTIFICATION OF THE PERMEABILITY FIELD OF A POROUS
MEDIUM FROM THE INJECTION OF A PASSIVE TRACER

L. Zhan and Y.C. Yortsos

ABSTRACT

We propose a method for the direct inversion of the permeability field of a porous medium
from the analysis of the displacement of a passive tracer. By monitoring the displacement
front at successive time intervals (for example, using a tomographic method), the perme-
ability can be directly obtained from the solution of a non-linear boundary-value problem.
Well-posedness requires knowledge of the pressure profile or the permeability at the bound-
aries of the system. The method is tested using synthetic data in 2-D (and some 3-D)
geometries for a variety of heterogeneous fields and found to work well when the permeabil-
ity contrast is not too large. However, it is sensitive to sharp variations in permeability.
In the latter case, a modified approach based on the successive injection in both directions
and the use of an optimization technique leads to improved estimates. An important feature
of the direct method is that it also applies to anisotropic porous media. When the princi-
pal axes of anisotropy are known, a suitable procedure is proposed and demonstrated using
synthetic data.

INTRODUCTION

Permeability heterogeneity is a most important feature of natural porous media, as it
affects significantly flow and fluid displacement properties. These dictate flow paths, and
the migration and dispersion of in-situ or injected fluids in porous media, with applications
ranging from the recovery of in-situ fluids to the fate of environmental contaminants in the
subsurface [1]. Heterogeneity is manifested at various scales, from the laboratory (core) to
the megascopic (field) scale. Its ubiquitous and multi-scale nature has attracted the interest
of many investigators, and a variety of studies have been devoted to its characterization and
identification [2).

The classical approach for identifying permeability heterogeneity is based on the inver-
sion of pressure data, under single-phase flow conditions [3]. Given that the transient flow of
slightly compressible fluids obeys the diffusion equation, a variety of field tests (well tests)
have been devised to infer permeability features by matching pressure data at well locations
to the solution of the diffusion equation. While significant advances can be made with this
approach, the sparsity of data restricts the detail as well as the uniqueness of the characteri-
zation. Pressure transient methods have also been applied to characterize the heterogeneity
of laboratory cores, using mini-permeameters [4]. These devices conduct mini-well tests on
the surface of a laboratory core (by injecting a small pulse of air and monitoring the resulting
pressure transient) and essentially provide a map of the permeability heterogeneity at the
external surface of the sample.

An alternative approach to permeability identification is based on the analysis of the
arrival times during the injection of passive tracers (namely of tracers which do not affect
the fluid viscosity and density). Various efforts have been made at the field scale to relate
the arrival times to the permeability, and to match assumed permeability fields to such data
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[5]. These techniques are usually indirect, based on optimizing arbitrary (or constrained)
initial guesses to match data at various, usually sparse, locations. As a result, they suffer
from non-uniqueness. Nonetheless, useful information can be extracted, which can be used
to constrain images of the subsurface permeability field.

When knowledge of the displacement front at successive time intervals is available, for
example through visual or tomographic techniques, arrival time methods should in principle
be able to provide direct maps of the permeability heterogeneity. Brock and .Orr [6] reported
one such attempt, using qualitative arguments, based on the visualization of displacements
in a 2-D heterogeneous bead pack. Withjack et al. [7] considered the application of X-ray
Computerized Tomography (CT). They proposed a model to infer the permeability hetero-
geneity from the analysis of CT-derived concentration contours. Their model is based on a
number of simplifying assumptions, the main of which is that each streamtube has constant
(but unknown) permeability and porosity, and is, thus, tantamount to an assumption of a
layered structure. Although restrictive, the work of Withjack et al. [7] was the first to point
out the potential of CT in identifying the permeability heterogeneity of porous media. CT
techniques are now routinely applied to monitor displacement fronts in porous media at the
laboratory scale. Advances in field scale tomography, for example by seismic methods or
cross-hole tomography, are also likely to lead to analogous results at the field scale [8]. Yet,
well-defined methods to invert such information to determine the permeability heterogeneity
are currently lacking.

In this paper, we propose a new method which focuses on this question, namely on how to
invert data on arrival times at various (and numerous) points in the porous medium to map
the permeability field. The method, elements of which were briefly described in [9], is based
on a direct inversion of the data, as will be described below, rather than on the optimization
of initial random (or partly constrained) guesses of the permeability field, to match the
available data, as typically done in the analogous problem of pressure transients. The direct
inversion is based on two conditions, that Darcy’s law for single-phase flow in porous media is
valid. and that the dispersion of the concentration of the injected tracer is negligible. While
the former is a well-accepted premise, the latter depends on injection and field conditions,
and may not necessarily apply in all cases. Based on these conditions, we formulate a non-
linear boundary value problem, the coefficients of which depend on the experimental arrival
time data. Because of the hyperbolic nature of the problem, uniqueness requires that either
the permeability or the pressure at the bounding surface of the porous medium be available.
This information is then combined to obtain a solution of the boundary-value problem from
which the permeability field can be directly calculated. An important feature of the method
is that it can be applied to determine the heterogeneity of anisotropic media, where the
permeability field is a tensor, -as is often the case in many natural porous media. For this,
displacements in two (for 2-D) or three (for 3-D) different directions must be conducted, as
will be described below.

In our approach, the experimental information on arrival times enters in the form of
spatial derivatives. As a result, the solution method is sensitive to errors in the estimation
of these derivatives, which are expected to increase when the variations in the permeability
are sharp and large. The errors are magnified around certain limiting streamlines, the width
of which increases in the downstream direction, and may lead to poor estimates of the
permeability in some regions. To circumvent this problem, we have modified the inversion
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method in such cases, by considering a forth-and-back hybrid approach, in which arrival times
are recorded a second time by repeating the tracer displacement in the reverse direction.
This approach is then combined with an optimization technique to improve the resulting
estimates.

The paper is organized as follows: In section II we describe the inversion method for
isotropic media. Section III shows numerical examples which test the applicability of the
method for various forms of permeability heterogeneity and its sensitivity to permeability
variation and spatial correlation. Section IV describes the hybrid approach for inverting per-
meability fields with sharp and large contrasts. The extension of the method to anisotropic
media of known and fixed principal axes is presented in section V. We close with a related
discussion and concluding remarks.

DIRECT INVERSION ALGORITHM: ISOTROPIC MEDIA

We consider the injection in a heterogeneous and isotropic porous medium of a passive
tracer. In the absence of dispersion, the concentration C(x,t) satisfies the equation

¢(x)6a—f+v~VC =0 (1)

where ¢(x) is the porosity of the medium and v is the superficial fluid velocity. Under slow,
viscous flow conditions, the latter satisfies Darcy’s law

v=-K-V® (2)

where K(x) is the symmetric permeability tensor and @ is a flow potential, V® = i—(Vp— P8),
where p is viscosity, here taken as a constant, p is pressure, p is density, also assumed
constant, and g is the acceleration of gravity. In this section, permeability is assumed to be
a scalar, K(x) = k(x)I, where I is the identity tensor. The anisotropic case is discussed in
Section V. Assuming incompressible fluids, the continuity equation reads :

V-v=0 (3)

In the absence of dispersion, we define the front location by the equation

F(x,t)=t— f(x)=0 (4)

where, assuming constant or monotonic injection rates, the function f(x) is single-valued,
thus a single arrival time is associated with a given point x. Then, the concentration is given
by

Clx,t) = C:(t)H(t — f(x)) (5)

where Cj(t) is the injection concentration, and H is the Heaviside step function.

The direct algorithm is based on the following two steps: First, we equate the two
expressions for the normal velocity at the front, given by the kinematics and by Darcy’s law,
respectively. Noting that the normal at the front is given by
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_ V¥ _ Vf (6)
IVFl - IVF

we use (5) and (6) in (1) to obtain a kinematic expression for the normal velocity there,

namely

n

$(x)
Up = — = 7
V7] 2
Darcy’s law (equations (2) and (6)) gives another expression for the same quantity
k(x)VO-Vf
Vp = —S———— 8
i )
Thus, (7) and (8) lead to the following result for the permeability
_ o)

which, in principle, can be evaluated in terms of ® and f. The second step consists of
substituting the above expression in Darcy’s law and making use of the continuity equation
(3) to obtain a non-linear equation for @,

v.[£970] _,

Equations (9) and (10) constitute the keys of the direct inversion method. Equation (10) is a
partial differential equation which determines ® given appropriate boundary conditions and
information on the porosity, ¢(x), and the arrival time function, f(x). From its solution,
the permeability field can be directly calculated using (9).

The following remarks are in order:

1. For the solution of (10), the porosity must be a known function of the spatial coordi-
nates. For applications using CT, this can be readily available.

2. Although at first glance equation (10) appears to be an elliptic (Laplace type) equation,
it is in fact a system of first-order hyperbolic equations. This can be readily shown, e.g. in
2-D, by defining

(10)

(11)

[~
I
g2l

in which case (10) becomes

_a_l 80x) }+g[ $x)u ]=o -

Oz fetufy oy fetufy
where subscripts indicate partial derivatives (and similarly for 3-D). These two equations
(11) and (12) form a pair of first-order hyperbolic equations. For their solution, and thus for
the solution of (10), information on the potential @ at the (no-flow) boundaries is necessary.

Equivalently, this information can be furnished from a knowledge of the permeability at
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the boundaries (which, for instance, can be obtained by a mini-permeameter, as previously
noted). At no-flow boundaries (where in the normal direction 22 = 0), equation (9) becomes
a partial differential equation for the variation of @ along the two tangential directions (for
the 3-D case), which can be integrated, given k and f at the boundary, to yield the required
profile. We must point out, however, that in all applications to be shown below, we solved
(10) assuming known pressure profiles at all boundaries. In this way, the numerical method
utilizes information from all boundaries, essentially solving an elliptic-like, rather than a
hyperbolic system.

3. A notable feature of (9) and (10) is that they depend on the gradient of the front
arrival time rather than the arrival time itself. On the positive side, this reflects a desirable
sensitivity of the method to heterogeneity. However, this dependence also introduces nu-
merical instability which can lead to problems when the permeability contrast is sharp and
large. A technique to circumvent these problems is described later in Section IV.

In summary, supplied with boundary conditions on the potential, equations (9) and (10)
can be solved directly to yield the permeability field in a heterogeneous porous medium
based on information on arrival times and the porosity heterogeneity. The resolution of
the inverted permeability field depends, among others, on the resolution of the arrival time
contours.

A Streamfunction Approach for 2-D Geometries

Before proceeding, it is worthwhile to note that in 2-D geometries, an alternative inversion

method is possible, based on the use of the streamfunction ¥, where % = v, and % = —v,.
Indeed, rearrangement of (7) leads to

0fov 9fov

%o Bagy - O (13)

which is a first-order, hyperbolic differential equation for ¥. The characteristics of the latter
are curves of constant f, namely of constant arrival time, which are available experimentally.
Therefore, the streamfunction can be computed by integrating along these contours, for
example

xp=m0+/yidy (14)

Yo Jz

where, in the case of a rectilinear sample with a no-flow boundary at yo = 0, we can take
¥y = 0 without loss. To compute the potential we make use of the fact that in the isotropic
case, equipotentials are orthogonal to the streamlines, hence

0¥ 9% 0V 09

bl ity

Oz Oz + Jy dy (13)
This hyperbolic equation can also be integrated subject to appropriate boundary conditions.

Then, the permeability can be estimated from (9), or from the alternative expression k =
% / %i—’. Nlustrative examples using this approach are discussed below.
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APPLICATIONS USING SIMULATED DATA

The direct inversion method was subsequently tested based on simulated data. We used
a high-resolution finite-difference simulator (the main features of which are described in {10])
or a streamline-based method to simulate tracer displacement and provide data on arrival
times and the pressure profile at the boundaries. The displacement corresponds to constant-
rate injection in the absence of gravity. The boundary value problem (10) was solved using a
standard SOR finite-difference formalism, which was iterated until convergence. For example,
for the 2-D geometry we used the five-point scheme

m m-+1 m m+1 m m+1 m m+1
172,000 T O /2,005 + 0541 2®0 5 + O75-1 287501

—(O7 1/2 + Oy /25 + Oy ye + Oy /5)07 = 0 (16)
where OF is the conductivity coefficient at block (3, 7) at iteration level m. All other coeffi-
cients were evaluated using the harmonic average between O, and its nearest neighbor. An
interpolation routine was used to interpolate the arrival times, when necessary. The spatial
derivatives of f were calculated using three-point differences. Equation (16) was solved using
the prescribed pressure profiles on both no-flow boundaries. Parenthetically, we note that
the forward problem belongs to the general class of problems recently discussed by Sethian
[11], and can benefit from the application of a Fast Marching Technique. Such was not
implemented here, however.

Figs. 1-3 show results of the application of the inversion method in three 2-D hetero-
geneity fields of a moderate permeability contrast, corresponding to a layered medium, a
medium with a smoothly varying heterogeneity and a permeability distribution following
fBm (fractional Brownian motion) statistics. Each figure shows true and directly inverted
permeability fields, along with true and directly inverted and potential profiles. In all these
examples, the direct inversion is found to give very good results.

Fig. 1 shows that the method handles well permeability contrasts transversely to the
direction of displacement, with some expected dispersion around the discontinuity. Potential
profiles are also reproduced well, again with some differences noted around the discontinuity.
We must emphasize that in this example, the success of the method rests on the availability
of the potential profile at the boundary, which removes the non-uniqueness of the problem.
(Indeed for a 1-D displacement with piecewise constant permeability at constant injection
rate, equation (10) becomes indeterminate). Likewise, good results were found when the
permeability contrast was in the direction parallel to the displacement. The ability of the
method to invert the permeability field in the presence of an arbitrary closed region of sharp
permeability contrast is discussed in a later section.

The permeability field of Fig. 2 is smoothly varying and contains two peaks and one
valley, with a permeability contrast of about 2. It was generated in a 64x 64 grid using
Franke’s test function from MATLAB [12]. This function often serves as a test for the
interpolation of scattered data. It is noted that the arrival times are much more sensitive to
the heterogeneity, than the pressure profiles, which are essentially parallel to the transverse
direction. This feature was noted in other cases as well, where the permeability variation
is relatively smooth. Fig. 2 shows that the comparison between actual and inverted fields
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(in permeability and potential profiles) is very good. This example is characteristic of the
success of the method in smoothly varying permeability fields.

A more stringent test is shown in Fig. 3 with a similar permeability contrast. The
permeability field is of the fBm type with a Hurst exponent H = 0.8, and it is a typical
example of a self-affine field, containing large-scale correlations [13]. We remark that fBm
statistics with a Hurst exponent larger than 0.5 are often assumed to describe the hetero-
geneity in the horizontal permeability of natural rocks [14]. Fig. 3 shows that the match
between actual and inverted data is also quite good. Potential profiles are closely matched.
The inverted permeability reproduces well the main features of this field, namely the regions
where the permeability is respectively high, medium or low. However, discrepancies can also
be detected in the point-by-point variation of the permeability, where the inverted field is
somewhat smoother than the actual. The ability to capture long-wavelength, as opposed to
high-frequency, variations is typical of the technique and was noted in other examples, as
well. Fig. 4 shows a statistical analysis of the actual and inverted permeabilities. Histograms
and the correlation structure (the semi-variograms) match quite well, and the scatter plot
is satisfactory. The dispersion around the 45° line indicates a small degree of point-by-point
mismatch, as also evidenced in Fig. 3.

The direct inversion technique is equally well applied to 3-D geometries. Before we
proceed, however, it is instructive to compare inversion results using the 2-D streamfunction
method. Figs. 5 and 6 show the resulting permeability estimates, along with the associated
streamfunctions, corresponding to Figs. 2 and 3, respectively. Although the streamlines are
well reproduced, it is evident that the inverted permeability fields, although maintaining the
large correlation features, miss significant details. There are also notable defects extending
along slice-shaped regions, which arise from the integration along the arrival time contours.
A statistical analysis, not shown here for lack of space, shows that the inverted permeability
reproduces reasonably well the semi-variograms. However, the histograms, and to a greater
degree, the scatter plot, have large errors in several places. The streamfunction method is
prone to relatively large numerical errors, because it involves a threefold interpolation for
spatial derivative estimation and the integration of hyperbolic equations (for determining the
streamfunction). These weaknesses make the method unfavorable compared to the direct
solution of (9) and (10) (as seen in the comparison of Figs. 2 to 5 and 3 to 6). Advantages
of the method, on the other hand, are that the permeability is inverted fast, compared to
the previous, while one also readily obtains the streamfunction profile, which may be useful
in other applications.

To demonstrate the applicability of the direct inversion method to three dimensions, we
considered the 3-D permeability field shown in Fig. 7a, consisting of a log-normal distribution
generated by Sequential Gaussian Simulation, with a natural logarithmic mean of 2.0, a
standard deviation of 0.2 and a dimensionless correlation length (with respect to the sample
size) of 0.5. The permeability variation is somewhat larger than before. Characteristic
arrival time contours from the simulation of the forward problem in a 16x16x16 lattice are
shown in Fig. 7b. The direct inversion algorithm was applied by using a 3-D version of
(16) along with boundary conditions supplied from the forward problem. The results of the
permeability inversion in Fig. 8 appear to be in relatively good agreement with the actual
(Fig. 7a). A more quantitative comparison is shown in the statistics of Fig. 9, which is
calculated by GSLIB [15]. In general, the comparison is good. The inverted field shows a
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smaller range of variation than the actual, as reflected in both the semi-variogram and the
histogram. Notably, the spatial correlation structure of the former is well captured in the
inverted data. The scatter plot indicates somewhat larger dispersion, compared to the fBm
field of Figs. 3-4, which is expected, given the larger permeability contrast in this example.

In the above examples, where the permeability contrast is not too large, or where the
permeability has relatively large spatial correlations, the direct inversion method gives good
results. When the contrast increases and variations in permeability are sharper, however, the
method is subject to increased errors. These primarily arise from the approximation of the
spatial gradients of the arrival time in regions where the latter varies sharply. For example,
Fig. 10 shows arrival time contours, calculated analytically (see Appendix), for flow around
an embedded sphere of lower permeability. Even though the permeability contrast is rela-
tively modest (0.6:1), there exist two layers, extending downstream of the sphere, where the
arrival times have sharp spatial variations. These layers are centered around the two limiting
streamlines tangent to the sphere. In these regions, the evaluation of the coefficients of (10)
is likely to introduce errors, and accordingly poor estimates for the permeability in some
places. These limiting streamlines also exist in any other field containing regions of sharp
permeability contrast. Because these zones extend downstream of the region of the sharp
contrast, however, the associated errors in permeability estimates are different depending
on the direction of displacement. We have conjectured, therefore, that the estimates of the
direct method could be improved substantially, if we were to combine information from two
different displacements, one in the forward and the other in the reverse direction.

A HYBRID ALGORITHM

To circumvent the problems posed by high permeability contrasts we propose the follow-
ing hybrid procedure:

1. Carry out a tracer displacement in the forward direction and directly invert to obtain
one permeability estimate, ks(x).

2. Carry out a tracer displacement in the reverse direction and directly invert to obtain
a second permeability estimate, ky(x).

3. Retain the estimates in places, where they differ in absolute value by no more than a
prescribed value and discard in all others. Assign estimates in these regions by an interpo-
lation algorithm (known in the geostatistics literature as kriging).

4. Use an optimization algorithm (to be briefly described below) to fine-tune the so
obtained composite permeability estimates.

The optimization algorithm is based on standard gradient methods [16] and will not be
discussed here in any detail. We briefly note that we use the objective function

1 (N M L

= S WAli00 - 77+ LWl P + L WalB -0} (07
i=1 =1 =1

where, the first term in the RHS is the weighted sum of the squares of the differences

between the front arrival times obtained from the simulator response, f;, and the data, f,

and the third is the analogous term for the differences between the potential at the no-flow

boundaries obtained from the simulator, ®;;, and the data, ®7;. The second term represents
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the mismatch between the current permeability estimate and its prior. It is a regularization
term, as required by Tikhonov’s theory [17], and restricts the parameters being optimized to
not deviate greatly from the prior information. Numerical experience has demonstrated the
necessity of this term for stable and convergent solutions. Nonetheless, the accuracy of the
initial guess plays a pivotal role in the convergence to the true solution. It is in this context,
that the hybrid algorithm offers an important advantage. Here, the prior information is
supplied using the direct inversion method, outlined in steps 1-3 above, which is generally
close to the true permeability field. As a result, in many of the cases tried, the optimization
method converges close to the true values. By contrast, in many related inverse problems, the
prior permeability is typically generated by a geostatistical algorithm constrained to (usually)
sparse measurements, and its convergence to the true solution is generally uncertain (e.g.
see [26]). At the same time, we must stress that we have also encountered many problems
involving sharp permeability contrasts, which cannot be successfully handled even with the
hybrid algorithm. Such an example will be shown below.

Applications of the hybrid algorithm using simulated data are illustrated in Figs. 11-14
for three different examples. The medium in Fig. 11 contains two blocks of low permeability
with a 1:5 contrast. This particular configuration corresponds to the experimental Hele-
Shaw cell used in [19], and was discretized by a 22 x 10 lattice. The top of Fig. 11 (panels
a,b) shows the prior estimate fed to the optimization algorithm, following the steps 1-3.
Due to the sharp permeability contrast between low and high permeable regions, the spatial
derivatives of the arrival times have significant numerical errors in certain regions, and lead to
a mismatch between true and inverted values in various places after steps 1 and 2. Through
step 3 (where estimates were discarded when they differed by more than 30%), these errors
have been minimized and the directly inverted field (Fig. 11, a,b) has the main trends of
the true field, although it is obvious that the contrast is not as sharp as the actual, and
is in need of fine-tuning. The results of the application of the optimization algorithm of
step 4, using 40 iterations, and based on the initial guess after kriging (top of Fig. 11), is
shown in the middle of Fig. 11 (panels c,d). The results are much improved and, with a few
exceptions, they are very close to the actual. Although not shown, potential and arrival time
profiles are also matched very well. By contrast, if an uniform initial guess, instead of the
one after the direct method on the top of Fig. 11, was used in the optimization algorithm,
the resulting estimate of the permeability field (after the same number of iterations) is poor
in many places, as shown in the bottom of Fig. 11 (panels e,f). This, despite the fact that
arrival times and potential profiles were found to match very well. We conclude that, at least
for this example, the application of the hybrid method gives a substantial improvement.

Fig. 12 shows the application of the algorithm to a correlated log-normal distribution
with a logarithmic mean of 2.0, a standard deviation of 0.5 and a dimensionless correlation
length of 0.25. In this example, the block-to-block permeability variation is much larger than
in the fBm field of Fig. 3 or the 3-D field of Fig. 7, the largest contrast being of an order of
magnitude. The application of the direct inversion method followed by kriging leads to the
results shown in the middle of Fig. 12 (panels ¢,d). Although capturing the general features
of the true field, the estimates are generally coarser and smoother than the actual values.
Comparison of arrival time and potential profiles based on the inverted field (not shown for
lack of space) indicates a mismatch with the actual in some places. To fine-tune the results
and recover some of the high-frequency variations, we applied the optimization algorithm of
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step 4. Results after 40 iterations are shown on the right of Fig. 12 (panels e,f). Although
the algorithm does not reproduce exactly the actual field, and some errors around large
variations of permeability are detectable, it is obvious that a significant improvement has
been achieved. Fig. 13 shows the corresponding statistical comparison. The mean and the
variance from the hybrid algorithm agree very well with the actual. (By contrast, in results
that are not shown, the variance from kriging is underestimated by about 20%, although
the mean is the same.) The two histograms are roughly equal, while the semi-variograms
have the same correlation structure. The scatter plot shows that good agreement exists over
a good range of lower permeabilities, although an increasing scatter can be seen at larger
permeabilities. In this example, these are typically associated with large contrasts. We
need to reiterate that the success of the hybrid algorithm depends to a large extent on the
accuracy of the initial guess, which is here provided by the direct method and positions the
optimization scheme close to the true solution. By contrast, the estimates resulting from
the application of the same optimization algorithm after bypassing steps 1-3 and utilizing
a uniform initial guess were quite poor, even though arrival times and potential matched
nearly perfectly with the true values.

At the same time, we must point out that we have also encountered several cases where
the hybrid algorithm was not as successful as desired. Fig. 14 (panels a,b) is an example of
a “checkerboard”-pattern heterogeneous field, with a permeability contrast of 1:4. A pattern
similar to this was used in some tracer displacement experiments [20]. The results of the
algorithm at the end of the kriging step are shown in the middle of Fig. 14 (panels c,d).
The mismatch with the true data is quite apparent. The 2-D projection in the middle of
Fig. 14 reproduces roughly the places of maximum permeability variation, but the picture is
clearly “out of focus”. The results of the application of the optimization method are shown
in the right of Fig. 14 (panels e,f). We note a clear improvement, compared to the previous
step, and a better focused image. Yet, there is also clear evidence of mismatches in various
places, including the smoothing of the sharp contrast around the edges of discontinuity and
of other defects, which altogether preclude an exact matching. Thus, although overall the
hybrid algorithm appears to be a promising alternative in cases involving large contrasts,
we caution that this is not uniformly true and that many counter-examples can readily be
constructed where the algorithm will not be as successful.

DIRECT INVERSION ALGORITHM: ANISOTROPIC MEDIA

On the other hand, a strong attribute of the technique proposed is that it can be readily
applied to anisotropic porous media. In this section, we consider for simplicity 2-D geome-
tries, where the principal directions of the permeability tensor are constant and coincide
with the rectangular coordinates = and y, namely we will assume that

k.(x) 0
0 ky(x)

An extension to the more general case is under consideration and will be presented elsewhere.
Under these conditions, the equations analogous to (9) and (10) read as follows

K = (18)

(K-V8)-Vf = —¢(x) (19)
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and

V(K-V®)=0 (20)
Using scalar notation, and substituting from (18), we further have
00 0f 000f
k:c%‘% + ky'gy—gy- = —¢ (21)
and
3} 1340 0 oo
% ) + 5 ) = )

Equations (21) and (22) constitute a pair of two equations in three unknowns (k,, k, and
®) and require additional information for their solution. One possible approach to furnish
this information is by conducting two tracer displacements, one in the z-direction with no-
flow boundaries perpendicular to the y-axis, and another in the y-direction with no-flow
boundaries perpendicular to the z-axis. If we denote the arrival time functions and the
potentials of the two displacements by fr and fi7, and ®; and @y, respectively, Eq. (21)
becomes

09 0fr 09 0f1
ks Oz Oz +hy Qy Oy —% (23)
kxa@ﬂ ofnm a‘j?ﬂifg - — (24)

9z 8z ¥ 8y Oy

for the respective displacements. Thus, the permeability components can be determined

ks A | Jy Oy "~ by dy | (25)
and
_ ¢ [0®;0fr 0% 0fn]
M= =412 9c ~ oz 0s (26)
where

_09;0f10%0fp 0%n0fyd®:0f1
~ 0z 0z Oy Oy 0z Oz Oy Oy
in terms of the given data f; and f, and the calculated potentials ®; and ®5. The latter
can be obtained by solving equation (22), with k, and k, given by (25)-(27), and with the
appropriate boundary conditions corresponding to the two different displacements. To solve
the resulting coupled system, we implemented the following iterative algorithm:

A

(27)

1. Based on the v-level estimates for the potentials @7 and ®%, use Egs. (25) and (26)
to estimate the v-level iterates k7 and k). At the initial iteration (v = 0), an initial
guess, typically in the form of a linear variation, is supplied for the potentials.
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2. Based on explicit (v-level) estimates for k2 and k, integrate (22) twice, using SOR
finite differences to calculate the potentials at the next iteration level, @' and ®%.

This algorithm was found to work well for the various cases tested so far.

The method was subsequently applied to the anisotropic permeability field shown in
the left of Figs. 15-16 (panels a,b). Its statistics are similar to Fig. 7, and involve a log-
normal spatially correlated distribution with the same mean and standard deviation. By
simulating tracer displacements in the two directions, x and y, respectively, we obtained
the respective arrival time functions and potentials at the no-flow boundaries, which were
used for the inversion according to the above scheme. The directly inverted fields are shown
in the right of the two Figs. 15-16 (panels c,d). Considering the coupled nature of the
problem, the reconstruction of the two permeability components is generally good. The
method reproduces relatively well the regions of high and low permeability. Compared
to the isotropic case under the same permeability contrast, however, the reconstruction is
not as sharp, and the projections of the inverted images appear slightly “out of focus” in
certain places. This mismatch reflects an underlying slight mismatch in the arrival times
and the potential profiles, which is not shown here. Further work is under way to improve
the algorithm and fine-tune the direct inversion method, including the implementation of a
hybrid algorithm as in the isotropic case.

CONCLUDING REMARKS

In this paper we presented a method for the direct inversion of the permeability of
porous media, based on arrival time contours and information on the pressure profiles at
the boundaries. The former can be obtained in real systems using techniques of visualiza-
tion, computerized tomography or cross-hole tomography. The method utilizes Darcy’s law
for flow in porous media in combination with the kinematics of flow, as expressed in the
arrival times, to derive a boundary-value problem, the solution of which leads to a direct
reconstruction of the permeability field. An important feature of the technique is that the
information from the pressure at the boundaries is used to formulate and solve an elliptic-like
formulation, rather than the two hyperbolic equations, which formally describe the problem.
The algorithm developed is a rigorous tool for the analysis of arrival time contours.

Using simulated data, the method was found to work well for cases, where the permeabil-
ity contrast is not very large, and the field is spatially correlated. In general, the technique
captures well variations corresponding to larger wavelengths, but not as well the fine-scale
details. For sharper contrasts, a hybrid version of the algorithm was developed, in which the
direct method is used to generate the initial guess in an optimization algorithm. The hybrid
version minimizes the sensitivity of the method to errors in spatial derivatives, which are
augmented in the presence of sharp contrasts. Examples in two and three dimensions using
simulated data demonstrated that the hybrid algorithm works well and that it is superior to
the more conventional case, where the initial input is a uniform distribution. However, other
examples can also be constructed, involving sharp contrasts, where the inversion technique
is not as satisfactory and requires further improvement. A second advantage of the direct
inversion technique is its potential to invert the permeability tensor in anisotropic porous
media. Preliminary results for the case where the principal axes of anisotropy are fixed and
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known were presented and found to be promising. Further work is currently under way to
fine-tune the method and to also extend it to the more general case, where the permeability
tensor is full.

The applicability of the technique to real systems relies on several conditions: the avail-
ability of pressure profiles at the system boundaries, the absence, or the minimization, of
dispersion during the tracer displacement and the availability of an adequate resolution in
arrival time contours. The first requirement appears to be the most difficult to meet, in
practice, in view of the demand for adequate spatial resolution, which presently available
tools may not possess, and the need to enforce Darcy’s law near no-low boundaries. Alterna-
tively, this profile can be obtained by locally probing the surfaces with a mini-permeameter
to construct a surface permeability map, from which the pressure profile can be computed.
A certain amount of dispersion is also unavoidable, in real porous media, where the disper- .
sion coefficient is proportional to the velocity, thus leading to a constant Peclet number and
a finite amount of dispersion. However, for relatively small dispersivities, dispersion effects
could be minimized. Sufficient spatial resolution on arrival times would allow to capture fine-
scale variations, at the expense of increased computational time in the optimization routine
of the hybrid algorithm, and possible instabilities as the degree of resolution increases. How-
ever, it must also be remarked that in our experience, so far, a coarse-grid reconstruction can
adequately capture the large-scale features of the permeability field, both in the isotropic
and the anisotropic cases. The process of validation of the method with actual experimental
data is currently under way.

APPENDIX:
Arrival Times For Circular Permeability Heterogeneity

In this appendix, we provide analytical solutions for a simple 2-D problem involving
tracer displacement in an infinite domain of constant permeability 1, in which a circular
inclusion of radius 7 = 1 and permeability x is embedded. Thus, the permeability is the step
function

k=(1-r)H(r—-1)+=« (A-1)

Subtracting the homogeneous solution (—z) from the potential, we next consider the solution
of

V- [kV(z + )] =0 (A-2)
where v* = —® + z. Thus,
V- (kVY) = —(k +1)é(r —1)= (A-3)

where § denotes the Dirac delta function. To solve (A-3) we use polar coordinates (r, ) and
the following interface conditions at the permeability discontinuity

Dlr=1y = Plr=a- (A-4)

and
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o)
&g—th_ - %IH_ = (1 — k)cosb. (A-5)

The solution is obtained in straightforward fashion

1—«
= . < -
P (1+E> rcosf ; r<1 (A-6)
1—k\1
P = (1+&> —;cosO ;o r>1 (A-7)

from which the velocity components can be calculated. We find,

2K
Vy = ; 1 <1
1+«
1—r\ y?—2°
z = 1 3
v +(1+/§> (22 + y2)? r>1
and
v, = 0 ; r<l1
_ k(1 — &) 2zy )
T _( L+r ) iy
Finally, the streamlines are the solution of
dy
A - <
. 0 ; r<1
dy _ 2(1 — k)zy Crsl
dz —  (1+r)(e2+y?2+(Q-r)(y2~2?)

from which the arrival times are obtained by integrating along the streamlines

_[F__ ¢ ’
t'—to —/;0 mdl‘ (A-S)

where ¢ is the porosity. These results were used to compute the streamlines and the arrival
time contours of Fig. 10 in the text.
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Figure 1: Application of the direct inverse method to a layered system shown in the left
side: (a)-(b) actual permeability plots; (c) actual arrival times; (d) actual (solid lines) and
inverted (dotted lines) potential profiles; (e)-(f) inverted permeability plots.
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Figure 2: Application of the direct inverse method to a smoothly varying field shown in the

left side: (a)-(b) actual permeability plots; (c) actual arrival times; (d) actual (solid lines)
and inverted (dotted lines) potential profiles; (e)-(f) inverted permeability plots.
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Figure 3: Application of the direct inverse method to an fBm field with H = 0.8 shown
in the left side: (a)-(b) actual permeability plots; (c) actual arrival times; (d) actual (solid
lines) and inverted (dotted lines) potential profiles; (e)-(f) inverted permeability plots.
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Figure 4: Statistical comparison between actual and inverted permeabilities of Fig. 3: (a)
histogram of actual permeability; (b) histogram of inverted permeability; (c) semivariogram
in two different directions of the actual (solid lines) and inverted (circles) data; (d) scatter
plot of actual and inverted data.
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Figure 5: Application of the streamfunction approach to the medium of Fig. 2: (a)-(b)
inverted permeability plots; (c) actual (solid lines) and inverted (dotted lines) streamlines.
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Figure 6: Application of the streamfunction approach to the medium of Fig. 3: (a)-(b)
inverted permeability plots; (c) actual (solid lines) and inverted (dotted lines) streamlines.
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Figure 9: Statistical comparison between actual and inverted permeabilities of Fig. 8: (a)
histogram of actual permeability; (b) histogram of inverted permeability; (c) omni-direction

semivariogram of the actual (solid lines) and inverted (dash lines) data; (d) scatter plot of
actual and inverted data.
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Figure 10: Streamlines and arrival time contours corresponding to a medium of uniform
permeability in which a circular inclusion of lower permeability is embedded (permeability
contrast is 0.6:1). The contours are calculated analytically (see Appendix). Displacement is
from left to right.
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Figure 11: Application of the hybrid algorithm to a system with block discontinuities in per-
meability (permeability contrast is 1:5): Top two plots (a)-(b) show permeability estimates
after steps 1-3 (Kriging). Middle two plots (c)-(d) show permeability estimates after step 4
(optimization). Note the closeness to the actual data. Bottom two plots (e)-(f) show per-
meability estimates using the optimization method but with a uniform permeability initial
guess.

202



®) (@ 6]

Figure 12: Application of the hybrid algorithm to a field with log-normal distribution with
maximum contrast of about 10: (a)-(b) actual permeability plots; (c)-(d) plots of perme-
ability estimates after steps 1-3 (Kriging); (e)-(f) plots of permeability estimates after step
4 (optimization). Note that the cut-off value of the colorbars in the image plots is set at 25.
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Figure 13: Statistical comparison between actual and inverted permeabilities of Fig. 12: (a)
histogram of actual permeability; (b) histogram of inverted permeability; (c) omni-direction
semivariogram of the actual (solid lines) and inverted (dash lines) data; (d) scatter plot of
actual and inverted data.
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Figure 14: Application of the hybrid algorithm to a checkerboard permeability pattern
(contrast is 2:8): (a)-(b) actual permeability plots; (c)-(d) plots of permeability estimates
after steps 1-3 (Kriging); (e)-(f) plots of permeability estimates after step 4 (optimization).
Note that the cut-off value of the colorbars in the image plots is set at 8.
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Figure 15: Application of the direct inverse method to an anisotropic field with known and
fixed principal axes of anisotropy. Results for k,: (a)-(b) plots of the actual permeability
component values; (¢)-(d) plots of the inverted permeability component values.
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Figure 16: Application of the direct inverse method to an anisotropic field with known and
fixed principal axes of anisotropy. Results for k,: (a)-(b) plots of the actual permeability
component values; (c)-(d) plots of the inverted permeability component values.
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